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ABSTRACT

The ethanol and lactate productions of Escherichia coli (E. coli) can be 

optimized using metabolic engineering, which implements gene knockout techniques. 

The gene knockout technique is utilized inside optimization algorithms to alter the 

metabolism of E. coli. Nowadays, several hybrid optimization algorithms have been 

introduced to optimize the ethanol and lactate productions. However, the existing 

algorithms were ineffective to produce the highest production due to the huge and 

complex metabolic networks. Therefore, the main goal of this study is to propose a 

hybrid of Artificial Bee Colony and Dynamic Flux Balance Analysis (ABCDFBA) to 

overcome the limitation of existing algorithms. Artificial Bee Colony algorithm has 

advantages such as high flexibility and fast convergence. Dynamic Flux Balance 

Analysis algorithm can predict metabolite concentration and the dynamic of diauxic 

growth. Experimental results show that the ABCDFBA has performed better results in 

terms of Biomass-Product Coupled Yield (BPCY) of ethanol, which was 1.9505 milli

gram (gram.glucose.hour)"1 and lactate was 6.6037 milli-gram (gram.glucose.hour)"1 

in E. coli performance compared to existing algorithms.
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ABSTRAK

Pengeluaran etanol dan laktat oleh Escherichia coli (E. coli) boleh 

dioptimumkan dengan menggunakan kejuruteraan metabolik melalui teknik 

penyingkiran gen. Teknik penyingkiran gen ini digunakan di dalam algoritma- 

algoritma pengoptimuman untuk mengubah metabolisme E. coli. Pada masa kini, 

beberapa algoritma hibrid pengoptimuman telah diperkenalkan untuk 

mengoptimumkan pengeluaran etanol dan laktat. Walau bagaimanapun, algoritma 

yang sedia ada tidak berkesan untuk menghasilkan pengeluaran tertinggi disebabkan 

oleh rangkaian metabolik yang besar dan kompleks. Oleh itu, matlamat utama kajian 

ini adalah untuk mencadangkan hibrid Koloni Lebah Tiruan dan Analisa Dinamik 

Fluks Seimbang (ABCDFBA) untuk mengatasi kekangan algoritma-algoritma yang 

sedia ada. Algoritma Koloni Lebah Tiruan mempunyai kelebihan seperti kefleksibelan 

yang tinggi dan penumpuan cepat. Algoritma Analisa Dinamik Fluks Seimbang boleh 

meramalkan kepekatan metabolit dan pertumbuhan diauxic secara dinamik. Keputusan 

eksperimen menunjukkan bahawa ABCDFBA telah menghasilkan nilai Hasil Bersama 

Biojisim-Produk (BPCY) dalam E. coli yang lebih baik berbanding algoritma- 

algoritma sebelum ini di mana nilai etanol adalah 1.9505 miligram (gram. glukos. jam)' 

1 dan laktat adalah 6.6037 miligram (gram. glukos. jam)'1.
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CHAPTER 1

INTRODUCTION

1.1 Overview

In this chapter, ethanol, and lactate production in Escherichia coli (E. coli), 

Artificial Bee Colony, and Dynamic Flux Balance Analysis are discussed. Problems 

background concerns on the issues and challenges faced in the ethanol and lactate 

production in E. coli. Moreover, the problem statement, goal, objectives, scopes and 

the significance of the research are stated respectively.

1.2 Introduction

Biofuels are one of the well-known resources to produce energy. One of the 

methods that produce ethanol is biomass fermentation. Biomass fermentation requires 

a large size of plantation area to plant corn or sugarcane in order to produce starch and 

sugar. Besides, rice bran is also one of the great potential material in ethanol 

production (Michel et al., 2016). Unfortunately, the process of fermentation brought 

up pollution issues such as deforestation for the plantation of sugarcanes or corns. 

Thus, in order to avoid most of the problems to produce ethanol, metabolic engineering 

on microorganism was introduced to produce ethanol by using microbe. This is due to 

a large number of microbes is easy to be cultivated in the laboratory and it is cheap.
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Recent studies show that E. coli is very suitable for producing bioethanol since it is a 

gram-negative bacterium and has the ability to convert sugar into ethanol in high yield.

Lactate has been used in a large area of processed food, cosmetics, oral and 

health care products and industrial applications. Besides, lactate is produced 

commercially by using several microorganisms (John et al., 2007), such as 

Lactobacillus strains. In addition, simple nutritional and host production under aerobic 

and anaerobic conditions are one of the E. coli advantageous characteristics. Moreover, 

E. coli development as a host production of lactate enabled physiology of microbe with 

large knowledge and high established protocols for genetic manipulation (Chang et 

al., 1999).

On the other hand, under anaerobic condition, lactate, acetate, ethanol, 

succinate and formate in E. coli are the yields of glucose mixed acid fermentation. 

Thus, E. coli is highly recommended since it is high established and an enormous 

knowledge explored for the physiology of E. coli enables it to use for genetic 

manipulation. In addition, gene knockout technique which made inactivation to the 

non-functional gene had being applied on the microorganism to boost the E. coli 

production of ethanol and lactate (Chang et al., 1999).

1.2.1 Gene Knockout Technique

Organism gene that has been genetically knocked out, missing or has been 

deleted completely from the organism is a gene knockout technology technique. A part 

of a gene from the sequenced gene characteristics can be learned by researchers 

through the technique of gene knockout.

The term knockout refers to knock out a gene by creating a new mutant. 

Whereas double knockout is at the same time, two genes in an organism are knocked 

out. Furthermore, triple knockout and quadruple knockout is being knocked out by 

three or four genes.
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The gene knockout technique is used to test the isolated gene function. 

Nevertheless, the knockout technique does not happen when repeated function of 

multiple genes exist. Nowadays, the gene knockout technique is frequently used in 

research on protein structure, biochemical production for commercial use or specific 

genes function.

1.2.2 Artificial Bee Colony Algorithm

Artificial Bee Colony (ABC) algorithm is an intelligent foraging behavior of 

honey bee swarm optimization algorithm (Karaboga, 2005). ABC discover 

optimization problems by measuring the speed (measurement) of artificial with good 

quality of solution (Karaboga and Basturk, 2007). Employed bees, unemployed bees 

which are onlookers and scouts respectively and food source are the main three 

components in ABC.

There are two different types of honey bee which are in different groups share 

food source information in order to achieve the food source localization task. The 

employed bees group is the first group that exploits a food source. Employed bees 

carry the precise food source information about its direction and distance from the nest, 

the source profitability, and the information is shared with other employed bees and 

scout bees (Karaboga, 2005). The second group is the unemployed bees. The 

unemployed bees looked for a new food source continuously. Unemployed bees are 

divided into scouts and onlookers. The new food source is searched by scouts around 

the nest. Then, employed bees shared all the information to the onlookers that wait at 

the nest (El-Abd, 2011). The food source is meant by the problem solution and the 

agent for solution finding is the bees. ABC is a population-based search algorithm used 

to predict the gene knockout capable of improving the production rate of targeted 

biochemical products.
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1.2.3 Dynamic Flux Balance Analysis

Dynamic Flux Balance Analysis (DFBA) is an extension of Flux Balance 

Analysis (FBA) to enable the analysis of the interactions between metabolisms. DFBA 

allows biomass dynamic prediction, substrate and concentrations of product for growth 

in batch or fed-batch cultures growth (Mahadevan et al., 2002). DFBA can provide the 

biochemical reaction pathway structured model when microorganism changes 

depending on the conditions of the environment. The model formulation included the 

expression uptake and production interaction, changes of regulatory that affected by 

conditions of the environment.

1.3 Problem Background

There are a lot of development in the metabolic model’s simulation of the 

experimental data from cellular and molecular biology. However, problems occur 

when conducted laboratory experiments to simulate metabolic models such as large 

metabolic network, and low productivity.

The complexities of the metabolic network can cause data ambiguity due to 

difficulties in predicting the genetic modifications effects on the desirable phenotypes 

(Patil et al., 2005; Rocha et al., 2008b). Besides, the huge and complex metabolic 

networks that consist of numerous metabolites makes the process to obtain gene 

knockout challenging.

In the past, some chemical compound production such as ethanol and lactate 

in E. coli is low (Zhang et al., 2011). The yield products are always far beneath their 

theoretical maximums. The traditional method is time-consuming and low 

productivity. Products with the smallest production use high computational time (Li et 

al., 2012). The implementation of the experimental cost is high due to the lack of 

proper optimization tools and modeling (Srirangan et al., 2012).

Thus, a hybrid of Artificial Bee Colony and Dynamic Flux Balance Analysis 

is proposed to optimize the production of ethanol and lactate and to solve the problems
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of the large metabolic network and low productivity of ethanol and lactate. 

Optimization can be made in the process of a microorganism to optimize the ethanol 

and lactate production.

1.4 Problem Statement

Over a decade ago, genome-scale metabolic network construction becomes 

popular and have a lot of advantages for researchers to understand more in the 

perspective of genome-wide. The fitness evaluation in this study is calculated using 

Biomass-Product Coupled Yield (BPCY). BPCY is calculated by considering the 

production yield and growth rate of the desired product in order to optimize the 

microbial production (Patil et al., 2005). Some existing algorithms have low results on 

BPCY due to the low production or the growth rate of the desired product is low.

The overproduction of the microbial becomes challenging as the process of the 

gene to be knocked out has limitations. Inside the constructed model, there are some 

gaps in the model due to incomplete biological information. The complex and large 

metabolic network caused computational time increased due to the difficulties in 

predicting the genetic modification effects on the desirable phenotypes and hard to 

obtain gene knockout (Patil et al., 2005; Rocha et al., 2008b). The preprocessing step 

should be done on the genome-scale metabolic model to reduce the search space as 

well to improve the computation time. As the metabolic network is large, it also leads 

to low productivity of the E. coli strains such as ethanol and lactate.

Therefore, the main problem of this research is the complex and large 

metabolic network and the challenging to optimize the production of the microbial 

strains. Thus, this research intends to address the aforementioned problems based on 

the following research questions:

i. How to reduce the metabolic network complexity in order to optimize the

ethanol and lactate production?
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ii. How to analyze the performance of the proposed hybrid algorithm in 

optimizing the metabolites production?

1.5 Research Goal

The goal of this research is to propose a hybrid of Artificial Bee Colony and 

Dynamic Flux Balance Analysis to identify a near-optimal set of gene knockout that 

leads to optimize the production of ethanol and lactate in E. coli.

1.6 Objectives

To achieve the goal, the specified objectives are as follows:

1. To develop a hybrid of Artificial Bee Colony and Dynamic Flux 

Balance Analysis for reducing the metabolic network complexity that 

leads towards optimizing ethanol and lactate production.

2. To analyze the experimental results (Biomass Coupled Yield Product, 

growth rate, and production yield) of each metabolite with existing 

algorithms and validate the list of genes deletion through biological 

database.

1.7 Research Scope

According to the objectives mentioned above, these research scopes are shown 

as follows:

i. Ethanol and lactate are the product being focused on the biomass 

production of Escherichia coli.

ii. The datasets used are E. coli iJO1366 for ethanol production and for

lactate production, which from E. coli core model.

iii. Format dataset is in System Biology Markup Language (SBML).
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iv. COBRA Toolbox is the software used in this research which is 

implemented in MATLAB to perform the hybrid algorithm.

v. The research is carried out by using a hybrid of Artificial Bee Colony 

and Dynamic Flux Balance Analysis in order to identify a near-optimal 

set of gene knockout that leads to optimize the production of ethanol 

and lactate.

vi. The result of genes deletion is evaluated with the reactions and gene 

information in the biological databases.

1.8 Research Significance

The main significance of this research is to increase the metabolite production 

with a new hybrid algorithm. Metabolic engineering has the potential to improve the 

metabolite production such as ethanol and lactate. By excluding some steps under gene 

knockout techniques, predicting the possible changes is made and novel products by 

analyzing metabolic states is generated. Hence, this research is conducted with the aim 

of identifying the near-optimal set of gene knockout that leads to optimize the 

production of ethanol and lactate via a hybrid of Artificial Bee Colony and Dynamic 

Flux Balance Analysis. Finally, this research hopefully can improve the metabolic 

engineering and computer science fields.

1.9 Thesis Organization

There are five chapters in this thesis. Chapter 1 explains about the research 

introduction which covers the discussion of problem background, problem statement, 

goal, objectives, scope and research significance. Chapter 2 covers the literature 

review of this research which discusses the previous research and algorithms. Chapter

3 is the research methodology shows the overall research process. Chapter 4 explains 

the implementation of a hybrid algorithm and datasets used in this research. Chapter 5 

shows the results and discussions of this research. Finally, Chapter 6 is the conclusion
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of this research which covers the research contributions, limitations, and future work 

of this research.
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