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ABSTRACT 

 

 

 

 

There are many applications of the generalized Burgers-Huxley equation 

which is a form of nonlinear Partial Differential Equation such as in the work of 

physicist which can effectively models the interaction between reaction mechanisms, 

convection effects and diffusion transports. This study investigates on the 

implementation of numerical method for solving the generalized Burgers-Huxley 

equation. The method is known as the Finite Difference Method which can be 

employed using several approaches and this work focuses on the Explicit Method, 

the Modified Local Crank-Nicolson (MLCN) Method and Nonstandard Finite 

Difference Schemes (NFDS). In order to use the NFDS, due to a lack of boundary 

condition provided in the problem, this research used the Forward Time Central 

Space (FTCS) Method to approximate the first step in time. Thomas Algorithm was 

applied for the methods that lead to a system of linear equation. Computer codes are 

provided for these methods using the MATLAB software. The results obtained are 

compared among the three methods with the exact solution for determining their 

accuracy. Results shows that NFDS has the lowest relative error and one of the best 

way among these three methods in order to solve the generalized Burgers-Huxley 

equations.  

 



 

 

ABSTRAK 

 

 

 

 

  

 Terdapat banyak aplikasi persamaan umum Burgers-Huxley yang 

merupakan Persamaan Perbezaan Separa berbentuk linear seperti dalam kerja-kerja 

ahli fizik bagi memodelkan interaksi antara mekanisme tindak balas, kesan perolakan 

dan penyebaran mengangkut secara berkesan. Kajian ini mengenai pelaksanaan 

kaedah berangka untuk menyelesaikan persamaan umum Burgers-Huxley. Kaedah 

ini dikenali sebagai Kaedah Beza Terhingga yang menggunakan beberapa 

pendekatan dan kerja-kerja ini memberi tumpuan kepada Kaedah Explicit, Kaedah 

Tempatan Crank-Nicolson (MLCN) yang diubahsuai dan Skim Perbezaan Terhingga 

Tidak Standard (NFDS). Dalam usaha untuk menggunakan NFDS, disebabkan 

kekurangan keadaan sempadan yang diperuntukkan dalam masalah ini, kajian ini 

menggunakan Kaedah Masa Kehadapan Ruang Tengah (FTCS) untuk langkah 

pertama dalam masa. Thomas Algoritma telah digunakan untuk kaedah yang 

membawa kepada sistem persamaan linear. Kod komputer disediakan untuk kaedah 

ini menggunakan perisian MATLAB. Keputusan yang diperolehi dibandingkan 

antara tiga kaedah dengan penyelesaian tepat untuk menentukan ketepatan mereka. 

Hasil kajian menunjukkan bahawa NFDS mempunyai ralat relatif yang paling rendah 

dan salah satu cara yang terbaik di antara ketiga-tiga kaedah untuk menyelesaikan 

persamaan umum Burgers-Huxley. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.0 Research Background 

 

 

Most of the science and engineering problems might encounter a single or a 

system of partial differential equations (PDE). This is a study of the generalized 

Burgers-Huxley equation for fluid dynamics. The generalized Burgers-Huxley 

equation is a nonlinear parabolic PDE that models various mechanisms in 

engineering field describing the interaction between convection, diffusion and 

reaction. 

 

 

The generalized Burgers-Huxley equation is in the form:  

 

2

2
( ) 0,  

u u u
u uf u

t x x

 
  
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(1.1) 

for every x l  and every 0t  , where 
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with the initial condition 
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and the boundary conditions 
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(1.5) 

while  is the advection coefficient and   is the coefficient of reaction. The function 

(1.2) is the factor of nonlinear reaction. In this study, the parameters are   as a non-

negative real number, 0,  1,     and (0,1)  .  

 

 

The role of the parameters on exact solutions was analyzed by Efimova and 

Kudryashov in [1]. The particular solution of (1.1) is 

 

1

1 2( , ) ( tanh[ ( )]) ,  for every  and every 0,
2 2

u x t a x a t x l t
 

      

(1.6) 

 



 

Nonlinear PDE are encountered in various fields of science. As stated by Sari 

and Gurarslan in [2], the generalized Burgers-Huxley equation as in equation (1.1) 

can be utilized to model the interaction between reaction mechanisms, convection 

effects and diffusion transports. Since there exists no general technique for finding 

analytical solutions of nonlinear diffusion equations so far, numerical solutions of 

nonlinear differential equations are of great importance in physical problems [3].  

 

 

 According to Sari and Gurarslan in [2] and Inan and Bahadir in [4], when 

0  and 1  , (1.1) is reduced to the Huxley equation which describes nerve 

pulse propagation in nerve fibers and wall motion in liquid crystals 

 

2

2
(1 )( ).

u u
u u u

t x
 

 
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 
 

(1.7) 

 

 

When 0   and 1  , (1.1) is reduced to the Burgers equation which 

describes the far field of wave propagation in nonlinear dissipative systems 

 

2

2
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u u u
u

t x x
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  
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(1.8) 

 

 

It is known that nonlinear diffusion equations (1.7) and (1.8) plays important 

role in nonlinear physics. They are of special significance for studying nonlinear 

phenomena.  

 

 

 



If we take 0,  and 0,    (1.1) becomes generalized Burgers-Huxley 

equation: 
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(1.9) 

 

 

This research will focus on solving the generalized Burgers-Huxley equation 

of the form (1.9) which can also be used to show a prototype model for describing 

the interaction between reaction mechanisms, convection effects and diffusion 

transport. 

 

 

Many numerical methods have been proposed for approximating the solution 

of the generalized Burgers-Huxley equation as listed below. Ismail et al. in [5] and 

Hashim et al. in [6] solved the generalized Huxley, Burgers-Huxley and Burgers-

Fisher equations by using the Adomian decomposition method (ADM). Likewise, 

Hashim et al. in [7] used the decomposition scheme obtained from the ADM yields 

an analytical solution in the form of a rapidly convergent series for the numerical 

solutions of the generalized Burgers-Huxley equation. The discrete ADM was 

applied to a fully implicit scheme of the generalized Burgers-Huxley equation by Al-

Rozbayani in [8]. 

 

 

As stated in Javidi in [9, 10] presented methods for solving of the equation by 

using the collocation formula for calculating spectral differentiation matrix for 

Chebyshev-Gauss-Lobatto point. Spectral collocation method and Darvishi’s 

preconditioning to solve the generalized Burgers-Huxley equation was used by 

Darvishi et al. in [11].  

 

 



Whereas Batiha et al. in [12, 13] used the variational iteration method, which 

are based on the incorporation of a general Lagrange multiplier in the construction of 

correction functional for the equation. Numerical solutions of the equation was 

obtained using a polynomial differential quadrature method (DQM) by Sari and 

Gurarslan in [2]. DQM is an extension of finite difference method (FDM) for the 

highest order of finite difference scheme [14]. As stated by Mittal and Jiwari in [3], 

this method linearly sum up all the derivatives of a function at any location of the 

function values at a finite number of grid points, then the equation can be 

transformed into a set of ordinary differential equations (ODE) or a set of algebraic 

equations. The set of ODE or algebraic equations is then treated by standard 

numerical methods such as the implicit Runge-Kutta method in order to obtain the 

solutions. 

 

 

For numerical solution of the equation, based on collocation method using 

radial basis functions, called Kansa’s approach was used by Khattak in [15]. As 

Javidi and Golbabai in [16], presented the spectral collocation method using 

Chebyshev polynomials for spatial derivatives and fourth order Runge-Kutta method 

for time integration to solve the generalized Burgers-Huxley equation. El-Kady et al. 

in [17] proposed based on cardinal Chebyshev and Legendre basis functions with 

Galerkin method for solution of the equation. Chebyshev Wavelet collocation 

method for solving generalized Burgers-Huxley equation proposed by Celik in [18].  

 

 

Another method as used by Biazar and Mohammadi in [19] is the differential 

transform method for solving of the equation. A fourth order finite-difference 

scheme in a two-time level recurrence relation was proposed for the equation by 

Bratsos in [20]. Dehghan et al. in [21] found a numerical solution of the generalized 

Burgers Huxley equation using three methods based on the interpolation scaling 

functions and the mixed collocation finite difference schemes. Whereas in [22] used 

Haar wavelet method for solving the equation. Mittal and Tripathi in [23] used the 

collocation of cubic B-splines method for numerical solution of the generalized 

Burgers-Fisher and generalized Burgers-Huxley equations.  

 



 

The explicit exponential FDM was originally developed by Bhattacharya in 

[24] for solving the heat equation. Whereas Handschuh and Keith in [25] used 

exponential FDM for the solution of Burgers equation. The Korteweg-de Vries 

equation is solved by Bahadır in [26] using the exponential finite difference 

technique. Whereas implicit exponential FDM and fully implicit exponential FDM 

was applied to the Burgers equation in [27].  

 

 

According to Sari and Gurarslan in [2] and Wang et al. in [28] investigated 

the solitary wave numerical solution of the generalized Burgers-Huxley equation and 

Estevez in [29] introduced non-classical symmetries and the singular manifold 

method on the modified Burgers and Burgers-Huxley equation.  

 

 

In the past few years, various powerful mathematical methods have been used 

such as homotopy analysis method by Molabahramia and Khani in [30], the tanh-

coth method by Wazwaz in [31], and Hopf-Cole transformation by Efimova and 

Kudryashov in [1] have been used in attempting to solve the generalized Burgers 

Huxley equation.  

 

 

Generally, the closed form solution for most problems involving the 

nonlinear PDE are not easily obtained. This fact makes the scientists realize the 

importance of developing another alternative to approximate the solutions of these 

PDE. After years of researches, scientists therefore approximate the solution of the 

system of PDE by using numerical discretization techniques on some function values 

at certain discrete points, so-called grid points or mesh points. FDM is one of the 

most widely used in engineering problems. 

 

 

FDM known as the simplest method where the functions are represented by 

their values at certain grid points and approximate the derivatives through differences 

in these values namely Newton’s forward difference, backward difference and 



central difference method for the first order and also the second order. The aim of 

this research is to solve the nonlinear generalized Burgers-Huxley equation using the 

nonstandard finite difference scheme (NFDS) that combine Newton’s forward and 

central difference methods for time derivatives.  

 

 

In this work, the NFDS is applied to solve numerically the nonlinear 

generalized Burgers-Huxley equation. The results will be compared with the explicit 

method and the modified local Crank-Nicolson (MLCN) method. The Newton’s 

forward difference method is been used in the explicit method for the first order 

derivatives, whereas the Newton’s central difference method is been employed for 

the second order derivative. In the MLCN method, the approximation use Newton’s 

forward difference method for the time derivatives. In the discretization of the 

MLCN method, the average of the current time 1k   and the previous time k  is 

taken as a collocation point where the spatial derivatives at those points are obtained 

by taking the average of Newton’s central difference method at time k  and 1k  .  

 

 

Some examples are presented to demonstrate the effectiveness of these 

methods to solve the equation. This research will show that the numerical solution of 

these methods are reasonably in good agreement with the exact solution. 

 

 

 

 

1.1 Problem Statement 

 

 

This study will described a numerical method known as Finite Difference 

Method (FDM) for solving the generalized Burgers-Huxley equation. The FDM can 

be employed in several ways such as the explicit method, the MLCN method and the 

NFDS. This research will solve the generalized Burgers-Huxley problem with these 

three methods, highlighting the NFDS. In order to use the NFDS, when there is a 

lack of boundary condition provided in the problem, this research will use the 



Forward Time Central Space (FTCS) method to approximate the first step in time. 

The results obtained are compared among the three methods with the exact solution 

to imply on their accuracy. Thomas Algorithm is employed in these methods that 

lead to a system of linear equations. Computer codes are developed for these 

schemes using the MATLAB software.  

 

 

 

 

1.2 Objectives of Study 

 

 

This study is to achieve the following objectives: 

1) To construct the NFDS using the FTCS method for the calculations at the 

first  

time step in solving the generalized Burgers-Huxley equation. 

2) To employ the NFDS, the explicit method and the MLCN method for solving  

the generalized Burgers-Huxley problem. 

3) To analyse the numerical results obtained by the three methods and compare 

its accuracy relative to the exact. 

4) To present the stability analysis of the three methods. 

5) To provide computer codes for the three methods by using MATLAB 

software. 

 

 

 

 

1.3 Scope of Study 

 

 

In this study, the main numerical approach that will be discussed is the 

NFDS. Also, the scope of the study will focus on solving the generalised Burgers-

Huxley equation with Dirichlet’s boundary conditions. However, a slight 

modification of this method is done by using the FTCS method to approximate first 



time step due to lack of boundary condition provided in the problem. The explicit 

method and MLCN method will be used for comparison on their accuracy. Next, 

MATLAB codes will be developed for the Thomas Algorithm in order to solve those 

three methods.  

 

 

 

 

1.4 Significant of Study 

 

 

The importance for this study is to provide numerical solution for the 

Burgers-Huxley equations using FDM in several different ways. The main method 

that is discussed in this thesis is NFDS which has been used in science and 

engineering fields in solving nonlinear PDEs and here, will be applied to the 

generalized Burgers-Huxley equations with the Dirichlet’s boundary conditions. This 

research will also discuss and apply the explicit method and the MLCN method to 

solve the problem. Then, the accuracy of these three methods are determined by 

comparing each with the exact solution. For the methods that lead to a system of 

linear equations, Thomas Algorithm will be used. This research will provide 

numerical codes for all methods of solving the generalized Burgers-Huxley equations 

using the MATLAB software.  

 

 

 

 

1.5 Thesis Organization 

 

 

The organizations of this study are divided into five chapters. Those chapters 

will discussed about the generalized Burgers-Huxley equation that apply three types 

of FDM such as the NFDS, the explicit method and the MLCN method. In addition, 

Thomas Algorithm is applied in order to solve those three methods that leads to a 

system of linear equations. 



 

 

Chapter 1 gives a brief description of the main problem that will be solved 

throughout the thesis. This chapter representing the backgrounds of the problem, the 

statement of the problem, the objectives and scope of the study and the significance 

of the study of the thesis.  

 

 

The literature survey of the generalized Burgers-Huxley equations and 

available methods used to solve the problem is provided in Chapter 2, mostly from 

books, research papers and journals. Here a detail on the NFDS, the explicit method 

and the MLCN method and their characteristics are implemented. 

 

 

Next in Chapter 3 presents the discretization of the steps involved in order to 

implement of the three methods numerically solve the generalized Burgers-Huxley 

equation.  For the NFDS, this scheme is combined with the Newton’s forward and 

central difference methods for time derivatives. However, due to the lack of 

boundary condition provided in the problem, the FTCS method is used to 

approximate first time step.   

 

 

Another method employed is the explicit method which uses the Newton’s 

forward difference method for finding the first order derivatives, whereas the 

Newton’s central difference method is been employed for finding the second order 

derivatives. In the discretization of the MLCN method, the average of the current 

time 1k   and the previous time k  is taken as a collocation point where the spatial 

derivatives at those points are obtained by taking the average of Newton’s central 

difference method at time k  and 1k  .  

 

 

The stability analysis of those three methods has also been illustrated in 

Chapter 3. The stability of each method is analysed by the Fourier series method, 

also known as Von Neumann’s method. 



 

 

Chapter 4 provides a problem that will be solved numerically using those 

three methods; the NFDS, the explicit method and the MLCN method. This study 

also develop computer codes for Thomas Algorithm which is implemented for 

solving the generalized Burgers-Huxley equations by using MATLAB software. To 

measure the accuracy of the results, comparison with exact solution is made. 

 

 

Last but not least, this research will also provide a conclusion for the overall 

of the thesis and also provide some recommendations for future research in Chapter 

5. 
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