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ABSTRACT 

 

 

 

 

 Building structural vibrations are generally regarded to be a serviceability problem, 

mainly affecting the architectural façade, and occupant comfort. However, in extreme cases 

such as earthquakes, it may lead to structural collapse. The excessive building vibrations are 

sometimes seen due to the resonant effect. In this study, the following blocks were proposed 

and investigated: Tuned Liquid Damper block (i-Block), Friction Damper block (B-Block) 

and vertical supporting block (V-Block). The newly developed non-loadbearing cement 

interlocking-block masonry was incorporated with damping characteristics. The laboratory 

study has identified Young’s modulus of 3.3 N/m
2
 and Poisson’s ratio of 0.278 to be most 

optimum for dry-mix concrete. Meanwhile, based on various robustness tests, the i-Block 

was found to possess the most suitable mechanical properties for interlocking block damper. 

Geometrical aspects of the i-Block were fixed at internal dimensions of 190 mm (length) x 

60 mm (width) x 90 mm (height) with varying water depth, dw in the range of 0 mm to 80 

mm. In the dynamics tests, resonant Transmissibility’s ratio plot approaches were used to 

compare the control sample with different dw. The responses of sine-sweep resonant test have 

shown the increasing damping values which were compared by simulation and empirical 

calculation. It was found that natural frequencies, fn obtained from the test were considerably 

matching the numerical simulation and empirical calculation. Interestingly, a small portion 

of water at 5 mm dw was sufficient to increase the damping ratio of the overall performances. 

In the seismic simulation, the Northridge, El Centro and Loma Prieta ground motion were 

numerically simulated by Ansys software. The peak ground base shears to displacement 

hysteresis on structural responses have been reduced by 19%, 26% and 35% for Northridge, 

El Centro and Loma Prieta’s earthquakes respectively. Meanwhile, effective performances 

were observed at the top floor level in relation to the mass of lower water contents to overall 

structure mass ratio requirement. Therefore, i-Block can be used to provide damping and 

reduce responses to building from earthquake disasters.  
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ABSTRAK 

 

 

 

 

 Getaran pada struktur bangunan biasanya dikaitkan dengan masalah had 

kebolehkhidmatan bangunan, terutamanya pada facade arkitek, dan keselesaan penghuni. 

Namun, dalam kejadian-kejadian yang esktrem, ia mungkin menyebabkan keruntuhan 

bangunan. Kejadian getaran bangunan yang berlebihan ini adalah disebabkan oleh kesan 

resonans. Dalam kajian ini, batu-batu blok saling kunci yang dikaji terdiri daripada blok 

meredam jenis cecair tertala-TLD (i-Blok), blok meredam jenis geseran (B-Blok) dan blok 

menyokong menegak (V-Blok). Perkembangan baru batu blok simen saling kunci tanpa 

keupayaan sokongan secara struktur telah digabungkan dengan pelbagai peredam. Keputusan 

kajian mendapati sifat-sifat bahan modulus Young pada 3.3 N/m
2
 dan nisbah Poisson pada 

0.278 adalah sesuai untuk konkrit campuran kering. Sementara itu, berdasarkan kepada sifat-

sifat mekanik daripada ujian-ujian keteguhan, i-Blok dikenalpasti sebagai blok peredam 

saling kunci yang paling sesuai. Dari segi geometrinya, dimensi dalaman ditetapkan pada 

190 mm (panjang) x 60 mm (lebar) x 90 mm (tinggi) dan kedalaman air, dw dalam julat 0 

mm hingga 80 mm. Dalam ujian-ujian dinamik, plot-plot Nisbah Kebolehpindahan resonan 

telah digunakan untuk menbandingkan sampel kawalan dengan setiap kedalaman air tersebut. 

Keputusan pada ujian resonan sine-sweep menunjukan peningkatan pada nilai-nilai redaman 

yang dibandingan dengan bacaan nilai simulasi dan pengiraan empirikalnya. Selain itu, 

pertambahan kecil air dengan kedalaman 5 mm memadai untuk menaikan nisbah redaman 

secara keseluruhan. Dalam simulasi seismik, pergerakan tanah gempa bumi daripada 

Northridge, El Centro dan Loma Prieta telah disimulasikan menggunakan perisian komputer 

Ansys. Pergerakan gempa bumi daripada keputusan histerisis ricih tapak kepada pesongan ke 

atas struktur berkurang sebanyak 19%, 26% dan 35% bagi gempa bumi Northridge, El 

Centro dan Loma Prieta. Di samping itu, prestasi yang lebih baik didapati berlaku di aras 

tingkat atas, ia berhubung dengan nisbah jisim kandungan air yang rendah berbanding 

dengan jisim keseluruhan struktur bangunan tersebut. Oleh itu, i-Blok didapati dapat 

memberikan peredaman dan pengurangan tindak balas daripada bencana gempa bumi.  
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CHAPTER 1  

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 General 

 

 

Undesirable vibrations of lightly damped flexible modern structures have 

created concern in the structural engineering community. Although these vibrations 

are related to serviceability problems, such as occupant comfort and cladding 

integrity, rather than affecting the primary load-bearing capacity, the economic 

considerations are also significant. The most promising solution to mitigating these 

vibrations is through the use of artificial damping devices. 

 

 

In previous years, one type of passive damping system, called the tuned 

liquid damper (TLD) has been successfully employed in practice, e.g., Tamura et al. 

(1988); Fujii et al.(1990); Wakahara et al. (1992) and Fediw et al. (1995). Although 

this type of device has many advantages, the mechanism by which it dissipates 

energy related to undesirable vibrations is not completely understood, nor has it been 

thoroughly investigated.  
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In spite of Computational Fluid Dynamics at its infancy, numerical 

simulation has gained popularity with researchers. In present day, the latest research 

could be obtained from Chang et al. (2010), Samanta & Banerji  (2010), Li et al. 

(2012), and Kaneko & Ishikawa (2015), to name a few. The development of the 

Tuned Liquid damper has been effectively described and analytically tested on the 

effect of hydraulic resistance produced by installed tank on the performance of the 

examined TLDs.  

 

 

The primary objective of this study is to experimentally and numerically 

investigate the behaviour of tuned liquid dampers in order to identify the underlying 

physical phenomenon of the liquid sloshing behaviour that has contributed to the 

damping characteristics of the Tuned Liquid Damper Block. A new interlocking 

block has been developed which incorporated the knowledge and technology with 

design emphasis on the development of vibration resistance.  

 

 

 

 

1.2 Background and Problem Statement 

 

 

Despite several successful applications as well as numerical and experimental 

investigations of the TLD behaviour, there currently exist limitations which restrict 

the designer’s ability to effectively employ the TLD as a damping device. These 

limitations include, but are not limited to, the following: 

 

 

1. Masonry system has been used in existing construction materials for a long time 

but the consideration for alternative block has been limited. The masonry system 

provides shelter and safety for human to live in, however, under the action of 

one or combination of wind or earthquake, building can be very sensitive to 

natural excitations. These excitations may cause the building to experience 
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structural failure. Passive damping masonry as an alternative for existing 

expensive damping required to be proposed and studied as the internal wall.  

 

 

2. It was commonly accepted that Unreinforced Masonry (URM) structures are the 

most vulnerable during earthquake by Li et al. (2001), but excessive building 

responses to the overall structure have been identified to be detrimental during 

the resonant effect. Passive block damper dynamic properties in its optimum 

level and damping consideration required attention.  

 

 

3. The question arises to most practitioners why bother earthquake masonry block? 

It has been noted global earthquake El Centro, Northridge, and Loma Prietra 

happened and immediately changed the engineering evolution. The impending 

natural issue required immediate call for reviewing on the block dampers which 

has always been the main part of the construction materials. Meanwhile, in 

Malaysia, Kuala Lumpur is subjected to 0.12g Peak Ground Acceleration (PGA) 

time history in the latest study of Hamid and Mohamad (2013), yet earthquake 

analysis has not been an important design consideration to be incorporated in the 

building analysis. Study is required on passive blocks to enhance awareness so 

developing nation can understand the impending natural issue.  

 

 

 

 

1.3 Objectives 

 

 

In this study, we seek to investigate new masonry blocks with inherent 

damping characteristics that could withstand earthquakes. The objectives as below: 

 

1. To propose new interlocking masonry blocks. Three types of blocks to be 

considered and incorporated with passive energy damping schemes. The blocks 
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to be numerically and experimentally tested to determine the material properties 

and its structural robustness. 

 

 

2. To conduct testing and numerical simulation for the dynamics properties and 

damping consideration of the TLD blocks (i-Blocks), in order to compare the 

resonant responses of the TLD blocks in various depths for its increased damping 

solution. 

 

 

3. To conduct multiple seismic simulations by combining the structure and TLD 

blocks (i-Blocks), in order to compare El Centro, Northridge, and Loma Prietra 

time history for its reduction in the performances. 

 

 

 

 

1.4 Scope and Limitation  

 

 

The scope of the thesis is listed below:  

 

 

1. Two masonry blocks will be identified from site existing blocks, while one new 

block will be proposed and designed according to the damper requirements as 

Tuned Liquid Damper requires water tight container and a chamber in the 

proposed block. 

 

 

2. Each of the blocks is to incorporate different damping system. Tuned Liquid 

Damper shall be incorporated in i-Block, while frictional and vertical bracing 

damping system for B-Block and V-Block respectively.  
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3. The i-Block characteristics were limited to internal dimensions of 190 mm 

(length) x 60 mm (width) x 90 mm (height) and the internal dimension of the 

Tuned Liquid Damper (TLD) cast in a concrete masonry unit to be subjected to a 

wide range of water depth from 5 mm to 80 mm.  

 

 

4. Performance of TLD random excitation in the experiments was carried out in 

single directional configuration. 

 

 

 

 

1.5 Significance of Study 

 

 

Accelerated mortarless masonry constructions with distinctive features have 

been developed and used in different countries. However, many of the existing 

masonry system have not been able to withstand dynamic excitation. The new 

development of the non-load bearing cement interlocking-block masonry system (i-

Block) incorporated damping characteristics. The innovation of the block is the 

Tuned Liquid Damper (TLD), based on the force excitation against the balancing act 

of the initial forces. 

 

 

 

 

1.6 Outline of Thesis  

 

 

In this thesis, a review of background information for this study has been 

presented. Following this review, an outline of the organization of this dissertation is 

provided as below: 
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Chapter 2 is the compilations of previous study on the successful applications 

of Tuned Liquid Dampers (TLDs) to civil engineering structures. It briefs on the 

general choices the structural engineer has in applying the damper in the building. 

Apart of the Tuned Liquid Damper and others, the study implied bricks and blocks as 

an option to masonry block dampers that this study has been undertaking. Thus, 

direction of the literature review also reported on the influence of the superior 

properties of the bricks has for building, civil engineering work, and landscape 

design.  

 

 

Chapter 3 described the methodology on the work flow of the tests and 

simulation. Blocks were proposed in the study with consideration to the material 

properties. The methods used for dynamics  experimental tests were described and 

justified. Followed by numerical modelling, the elemental formulation was briefed in 

respect for it being entitled to simulations. Further clarifications were detailed in 

subsequent chapters which deemed fit and paramount to be assigned in each chapter. 

 

 

Chapter 4 presents study of the first objective on developing a new 

construction material as an alternative for expensive dampers. It explained on the 

robustness and characteristics of the vertical-supported block (V-Block); braced-

supported block (B-Block) and block with liquid damper (i-Block). By experimental 

tests and numerical modelling, it was intended to investigate if the liquid damper can 

significantly enhance the overall performance of the block.  

 

 

Chapter 5 described the second objective on the examination of the individual 

block on free vibration and harmonic characteristics to consider for the resonant 

effect of the building subjected to a wide range of water depth. It described about the 

successful applications of Tuned Liquid Dampers (TLDs) to masonry block. Further 

study of the combined structural model and TLD blocks test as a system has been 

compared with the experimental works and numerical simulations results. It was to 

investigate if the new innovative block with tuned liquid can significantly increase 

the damping characteristics.  
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In Chapter 6, numerical simulation scheme only has been used to model the 

interaction of a TLD in single degree-of-freedom structure with earthquake ground 

motions. The seismic excitation of the Northridge, El Centro and Loma Prieta ground 

motion were used. Each level of lower, middle and upper floor was evaluated. The 

last objective was to observe the structure and block seismic behaviour combined 

responses. Therefore, the proposed new masonry blocks suitability can be adopted to 

save building from earthquake disasters.  

 

 

The last Chapter 7 concluded the Block study by summarizing the overall 

results and suggestions. Together with a new development of the block subjected to 

the disadvantages in its application. Finally, the future development and its 

recommendations of the block shall also be discussed to make sure the block to be as 

inclusive as possible as new seismic performance Tuned Liquid Damper interlocking 

block. 
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