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ABSTRACT 

 

Swirling flameless combustion has been highly concerned nowadays due to 

ultra-low NOx and pollutant emission while delivering low temperature differential 

and stable combustion. Thanks to the rapid developed computational ability, 

simulation study has solved higher complexity of computational fluid dynamics 

problems for commercial and research aspect. In this project, the effect of swirling 

flameless combustion has been investigated by using computational method. In this 

study, a new setup has been modelled by varying fuel-inlet angle and to investigate 

the effect of swirling flameless combustion based on non-premixed swirling 

combustion furnace SFR 42 configuration. Non-premixed swirling combustion 

furnace SFR 42 is an asymmetric swirling combustion furnace that allows rapid 

mixing between air and fuel upstream of the reaction zone. The design of 

non-premixed swirling combustion furnace introduces visual characteristics of a 

premixed flame. This study shows that by changing the fuel-inlet angle to 45 degree 

tangentially, it will produce nine times lower NOX emission compared to fuel-inlet 

angle 5 degree tangentially. Fuel-inlet angle sloped 45 degree tangentially swirling 

combustion also produced peak temperature approximate 1400 K which has similar 

result compared to other cases. This condition helps to improve combustion 

efficiency and less pollutant emission. Temperature result of SFR 42 was taken as 

data validation of this project. 
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ABSTRAK 

 

Baru-baru ini, pembakaran tanpa api telah menarik perhatian ramai kerana 

dapat menghasil kandungan NOx dan pencemar yang rendah serta masih dapat 

menyampaikan pembezaan suhu yang rendah atas dengan pembakaran yang stabil. 

Dengan keupayaan computasi yang cekap pada zaman ini, kajian simulasi dapat 

menyelasaikan masalah dalam bidang computasi dinamik bendalir dengan cekap 

untuk kegunaan komersial dan penyelidikan. Dalam projek ini, kesan pembakaran 

tanpa api akan dikaji dengan prosedur baru. Kajian ini menggunakan sudut salur 

masuk bahan api yang berlainan berdasarkan non-premixed pembakaran tanpa api 

SFR 42 konfigurasi. Non-premixed pembakaran tanpa api SFR 42 konfigurasi adalah 

pembakaran simetri untuk membenarkan kecampuran udara segar dengan bahan api. 

Rekabentuk pembakar non-premixed SFR42 konfigurasi akan menghasil ciri-ciri 

bersama dengan pembakar premixed. Kajian ini menujukkan penghasilan NOX dapat 

dikurangkan sebanyak sembilan kali dalam kes 45 darjah sudut salur bahan api 

berbanding dengan kes 5 darjah. Pertukaran sudut salur masuk bahan api ke 45 

darjah dapat menghasilkan suhu puncak pembakaran sebanyak 1400 K bersama 

dengan kas kajian lain. Keadaan ini akan meningkatkan kecekapan pembakaran dan 

menurangkan perlepasan pencemeran. Keputusan kajian suhu kes SFR 42 akan 

diambil sebagai pengesahan data dalam projek ini.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Studies of Swirling Combustion 

 

1.1.1 Study of Swirling Jet 

 

A lot of aerodynamics studies of swirling flow has been carried and published 

nowadays and accounted as references. An orifice upstream flow imparted from 

rotating motion creates swirling effect. A strong swirling jet will create the effect of 

destructive axial pressure gradient. These effects will result in reverse flow along the 

axial axis and creates internal recirculation zone (IRZ) which is also known as vortex 

breakdown. Many types of burners and combustion engines used swirling jet effect to 

control the flames in combustion chamber in order to promote better combustion 

efficiency. For instance, a lower NOX emission can be yielded by independently 

adjusting the amount of swirl and flow for a low NOX burner. The final induced 
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swirling flow pattern is shown in figure 1.1. External recirculation zone (ERZ) is 

observed between the flame brush and swirl can. ERZ will cause outflowing jet are 

recycling cold products and inducing swirl can wall are much cooler. System stability 

may be increased based on recirculation of products within the flame.  

 

The study from Tangirala et al. was found that by increasing the heat release 

accelerates the gas which helps to adjust the recirculation of products. By increasing 

heat release, it increases the flame stability, turbulence kinetic energy levels and the 

products recirculation. The recirculation process was driven by heat release which 

includes accelerations of gas and gas expansion. 

 

 

Figure 1.1 Flow pattern developed by a swirl burner (Vanoverberghe 2004) 

 

Some swirl effect studies and experiments were conducted by Chen and 

Driscoll (1988), Chen et al. (1990). The main purpose of the study was to improve 

flame stability and mixing for swirl numbers up to one. The recirculation zone has 

been established at swirl number (S > 0.6). Further increasing the swirl number, it 
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will reduce the flame stability as the flame in zero-axial-velocity line failed to 

overlap lower-speed flow at the recirculation zone. One of the disadvantageous of 

excessive swirl in burner is that the flame will move upstream due to increased of 

adverse pressure gradients. 

 

Maximum possible turbulence levels can be obtained by improving mixing 

and shortening flame length in order to reduce NOX emissions. It does improve the 

flame stability too. There are two locations where maximum levels of turbulence 

kinetic energy that often occurred, which are eye of vortex of the internal 

recirculation zone and forward stagnation zone of the internal recirculation. 

 

In general the ideas of swirling jet flames study includes the issues of flame 

stabilization, NOX emission, combustion chamber effects, flow field and technology 

and technique for measurement.  

 

1.1.2 Computational Fluid Dynamics Development 

 

A lot of new numeric methods are developing and evolving to solve 

problems and optimize designs. The aim of numeric methods nowadays is moving 

towards to more realistic modelling, increasing result accuracy and increasing the 

calculation performance. However, no matter how advance the computational 

numeric methods have been taken for calculation, experimental result still needs to 

be compared with simulation result. An important topic to be discussed for 
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computational fluid dynamics simulation is to perform grid sensitivity of studies to 

make sure the result is independent.  

 

In this study, the simulation model will be carried out by using ANSYS 

FLUENT 16 commercial software. The scope of simulation is to evaluate the effect 

of inlet-fuel angle of swirl combustion. 

 

1.2 Non-premixed Asymmetric Swirling Flameless Combustion Case SRF 42 

 

This swirling combustion furnace case SFR 42 design adopts the previous 

study proposed by Raid A. Alwan (2016). The concept of vortex flame provides 

stable flame by stabilizing the reaction zone on the boundary of a forced vortex field, 

which allows mixing between air and fuel upstream of the reaction zone. Interaction 

of axial and tangential air velocity components will generate swirl motion and axial 

thrust of the reacting flow within the combustion furnace. 

 

The air flow is divided by two streams. One stream passes axially. The 

second stream passes tangentially. Swirl vortex flow is induced by the interaction 

between tangential air and circumferentially fuel. Central recirculation zone is also 

created by strong swirling effect in the core of the combustion furnace. The fuel is 

injected by 10 ports of fuel-inlet which are distributed circumferentially along the 

combustion furnace basement and an extra concentric axial port as shown in Figure 

1.2. On the other hand, air is injected by four tangential ports and twelve co-axial 

ports. The configuration above successfully introduced a swirl component in the 
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central region of the combustion furnace, along with a secondary co-axial fuel 

stream. 

 

 

Figure 1.2 Asymmetric swirling flameless combustion case SFR42
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