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ABSTRACT 

 

 

 

 

Metallocene polyethylene (mPE) has been known for its excellent physical 

and mechanical properties, but its poor hemocompatibility limits its clinical 

application. Objective of this study was to analyze the physicochemical properties 

and blood compatibility of mPE following nitric acid (HNO3) treatment. 

Characterization tests were performed using 3D Hirox, SEM, AFM, contact angle 

and FTIR. Blood compatibility of the sample was studied by conducting blood 

coagulation assays; hemolysis assay, PT, APTT, platelet adhesion and protein 

adsorption test. Result shows that the contact angle of the mPE treated with HNO3 

decreased from 86º to 69.7º. Surface of the mPE and the HNO3 treated mPE 

investigated with FTIR revealed no major changes in its functional groups. 3D Hirox 

digital microscopy, SEM and AFM images show increased porosity and surface 

roughness. The protein adsorption studies show that the adsorbed albumin increased 

and adsorbed fibrinogen decreased in 60 minutes HNO3 treated sample. Blood 

coagulation assays prothrombin time (PT) and activated partial thromboplastin time 

(APTT) were delayed significantly (P < 0.05) for the 60 minutes HNO3 treated 

sample. Hemolysis assay and platelet adhesion of the treated surface resulted in 

reduced lysis of red blood cells and platelet adherence indicating improved 

hemocompatibility of HNO3 treated mPE. To determine that HNO3 does not 

deteriorate elastic modulus of mPE, the elastic modulus, tensile strength and tensile 

strength at break of mPE and HNO3 treated mPE was compared and the result shows 

that HNO3 treatment does not deteriorate the mechanical properties of mPE. To 

conclude, the overall observation suggests that the novel HNO3 treated mPE may 

hold great potential to be exploited for various temporary blood contacting devices 

like catheters, endoscopy tip and etc. 
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ABSTRAK 

 

 

 

 

 Metallocene polietilena (mPE) lebih dikenali dengan sifat-sifat fizikal dan 

mekanikal yang mengagumkan, namun masalah keserasian dengan darah 

menghadkan aplikasi klinikal bahan ini. Objektif kajian ini adalah untuk 

menganalisis sifat-sifat fizikokimia dan keserasian darah mPE selepas rawatan asid 

nitrik (HNO3). Ujian pencirian telah dilakukan dengan menggunakan 3D Hirox, 

SEM, AFM , sudut kenalan dan FTIR. Keserasian darah sampel telah dikaji dengan 

cerakin pembekuan darah seperti cerakin hemolisis, PT, APTT, bilangan platelet 

melekat dan ujian penyerapan protein. Sudut sentuhan bagi mPE yang 

ditindakbalaskan dengan HNO3 telah menurun daripada 86º kepada 69.7º. Analisis 

FTIR menunjukkan tiada sebarang perbezaan yang ketara dari segi kumpulan 

berfungsi antara mPE dan mPE yang ditidakbalaskan dengan HNO3. Imej pada 

mikroskop digital 3D Hirox, SEM dan AFM telah menunjukkan peningkatan dari 

segi saiz liang dan kekasaran permukaan. Kajian penyerapan protein menunjukkan 

bahawa serapan albumin meningkat manakala penyerapan fibrinogen menurun bagi 

mPE yang ditindakbalaskan dengan  HNO3 selama 60 minit. Masa bagi cerakin 

pembekuan darah bagi prothrombin (PT) dan separa tromboplastin yang diaktifkan 

(APTT) mempunyai perbezaan yang ketara (P < 0.05) untuk mPE yang 

ditindakbalaskan dengan HNO3. Cerakin hemolisis dan lekatan platelet untuk 

permukaan yang ditindakbalas mengurangkan lisis sel-sel darah merah dan 

pematuhan platelet menunjukkan sifat keserasian dengan darah yang baik untuk mPE 

yang ditindakbalaskan dengan HNO3. Tiada perubahan dari segi sifat-sifat mekanik; 

elastik modulus dan kekuatan tegangan tercatat antara sampel mPE sebelum atau 

selepas ditidakbalaskan dengan HNO3. Oleh itu, analisis keseluruhan menunjukkan 

bahawa mPE yang ditindakbalaskan dengan HNO3 mempunyai kebarangkalian yang 

positif untuk diaplikasikan sebagai peranti sementara yang bersentuhan dengan darah 

seperti kateter, tip endoskopi dan lain-lain lagi. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background 
 

 

Materials which have been playing a vital role in replacing and mirroring the 

functions of various organs in human system [1] are collectively known as 

biomaterials. Biomaterial is the combination of substances originating from natural, 

inorganic or organic materials. These materials are biocompatible exactly or partially 

when it comes in contact with the body during the healing time. They involve 

complete or part of a living organism or biomedical device which perform, augments 

or replaces any natural functions. Biomaterials are commonly used in various 

medical devices and systems like synthetic skin [2], drug delivery systems [3], tissue 

cultures [4], hybrid organs [5], synthetic blood vessels [6], artificial heart valves, 

cardiac pacemakers [7], screws, plates, wires and pins for bone treatments, total 

artificial joint implants, skull reconstruction [8], dental and maxillofacial applications 

[9].  

 

 

Biomaterials broadly fall into the four main types namely metals, ceramics, 

polymers and biological substances [10]. Metals have unique atomic structure which 

confers them characteristic strength and properties which enable them specifically 

for load-bearing applications like orthopaedics. However, the corrosion associated 

with the use of metals limits their utility. Ceramics have evolved as better 

biomaterials because of their bio-inertness and compatibility. However, due to 

brittleness and low impact strength [11], ceramics are losing popularity. Polymers 
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have widespread applications in the field of biomaterials. Properties of polymers are 

dependent on the unit macromolecule present in the long chain of the polymer. 

 

 

Among all four types, the polymers have widespread application in the field 

of biomaterials because of excellent physico-chemical and mechanical properties. 

Moreover, polymers can be feasibly molded into desired shapes with desired 

mechanical characteristics. The most important application of polymers is 

cardiovascular based implants [7] and blood contacting devices [1]. The use of 

polymers in medical application ranges from vascular grafts, stents, prosthetic heart 

valves, catheters, heart assist devices, hemodialyser.  

 

 

Modern revolution in polymer technology like metallocene single-site 

catalyst introduced a new class of polyolefins with improved performance properties 

like enhanced toughness, sealability, clarity, and elasticity [12]. The metallocene 

consists of two cyclopentadienyl anions (Cp,) which are bound to a metal center (M) 

[12] which has an oxidation state II, thereby resulting in a general formula M(C5H5)2. 

One among the polymers developed through metallocene technology is metallocene 

polyethylene (mPE). mPE typically finds applications in disposable bags, storage 

bottles, blood bags, and syringe tubes. Even though mPE has outstanding 

permeability to oxygen and acts as a barrier towards ammonia and water, mPE lacks 

blood compatibility [13] to be used for blood contacting biomedical implants. 

 

 

Biocompatibility is a prime factor which determines the quality of a 

biomaterial and its application in various arenas. There are different definitions for 

biocompatibility. It may be defined as the ability of the material to perform at a 

specific body site with an appropriate host reaction. Biocompatibility may also be 

defined as the ability of a biomaterial to perform its desired function with respect to a 

medical therapy, without eliciting any undesirable local or systemic effects in the 

recipient or beneficiary of that therapy, but generating the most appropriate 

beneficial cellular or tissue response to that specific situation and optimizing the 

clinically relevant performance of that therapy [14].  
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Biocompatibility has been mentioned in many works with increasing interest 

in evaluating the characteristics of medical materials and devices and also the 

responses caused by its components. The ideal pattern for determining these 

properties has not yet been determined; but, various methods have been suggested for 

this purpose. Biocompatibility encompasses many aspects of the material, including 

its physical, mechanical and chemical properties, and potential cytotoxic, mutagenic 

and allergenic effects [15], so that no significant injuries or toxic effects on the 

biological function of cells and individuals arise. Until the biocompatibility of a 

material is proven, it must be subjected to various studies ranging from in vitro 

assays to clinical trials, involving distinct areas such as pharmaceutics, biology, 

chemistry and toxicology to justify its use as a biomaterial. 

 

 

The term biocompatibility has been defined by consensus, but not blood 

compatibility. The interactions between blood and a surface depend on the blood 

composition, the blood flow and the surface of the material defined by its 

physicochemical feature. The design of bloodcompatible materials is clearly a 

challenge to increase success in all medical devices that come in contact with blood 

and to answer unsolved problems in vascular reconstruction.  

 

 

To explain blood compatibility from a different perspective, consider a 

material that is not blood compatible, i.e. a thrombogenic material. Such material 

would produce specific adverse reactions when placed in contact with blood: 

formation of clot or thrombus composed of various blood elements; shedding or 

nucleation of emboli (detached thrombus); the destruction of circulating blood 

components and activation of the complement system and other immunologic 

pathways [10]. Thus, we can define blood compatibility as the ability of the material 

to work in a particular place without eliciting any of the above mentioned blood 

related complications. Indeed, biocompatibility of blood contacting devices relates 

mainly to the thrombotic response induced by the materials. 

 

 

Several distinct but interrelated thrombotic and antithrombotic systems exist 

to prevent the formation of intravascular clots expected in response to vascular 
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trauma. Haemostasis is the sum of these mechanisms and serves to limit blood loss 

following injury. Once regulation is initiated, these same mechanisms combine first 

to localize the clot at the site of injury, then to terminate coagulation and finally to 

remove the clot once it has served its purpose. These haemostatic mechanisms 

include platelet activation, coagulation, fibrinolysis and local vascular effects. Blood 

clotting, platelet adhesion and giant cell formations are major problems associated 

with blood clotting devices. These problems frequently arise in cardiovascular 

implants since the material is always in contact with blood and its components [7].  

 

 

The hypothesis of this thesis was that the HNO3 treatment on mPE may 

improve the blood compatibility of the mPE polymer, to be utilized for different 

temporary blood contacting devices application like endscope tip, catheters and etc. 

The rationale for this hypothesis was that, when the mPE surface is subjected to 

HNO3 treatment it was expected to etch the mPE surface which may improve the 

wetabbility or hydrophilicity of mPE. It may be expected that improved 

hydrophilicity may alter the protein adsorption and blood coagulation time resulting 

in enhanced blood compatibility. Besides that, it is also hypothesized that the HNO3 

treatment on mPE will not affect the mechanical strength of mPE. 

 

 

 

 

1.2 Statement of Problem 
 

 

Although mPE has excellent physico-chemical and mechanical properties, it 

fails as a promising biomaterial because of its poor blood compatibility. 

Biocompatibility is a vital factor which determines the quality of a biomaterial and 

its application in various arenas. It may be defined as the ability of the material to 

perform at a specific region with the appropriate host reaction. The events occur 

when the blood comes in contact with the implant is collectively called as blood 

mediated reactions or blood compatibility. Whenever the blood comes in contact 

with the implants (biomaterial) it will lead to following complications:  
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1. Blood components interaction with surfaces resulting in protein and water 

adsorption. 

2. Blood cells interfere with the surface of biomaterial.  

3. These actions lead to the hemostasis and coagulation.  

 

 

 To solve these issues, different surface modification techniques have been 

studied yet most of them are complex and limited to certain family of polymers. In 

recent times, millions of dollars was invested in advanced biomaterial research which 

includes discovery of new alternatives. However, in order to cater the high demand, 

more research needs to be encouraged to enhance the properties of the existing 

medical materials using feasible, eco-friendly and affordable modification technique. 

Hence, nitric acid surface modification technique on mPE was performed for 

improving its blood compatibility and it is the research gaph which will be addressed 

in this research.  

 

 

 

 

1.3 Objectives 

 

 

This research was carried out to determine the potential of nitric acid (HNO3) 

treated metallocene polyethylene (mPE) as a biomaterial, for blood contacting device 

application. The following are the objectives of this study: 

1. To investigate the physico-chemical changes induced on the surface of the 

mPE after HNO3 treatment. 

 

2. To determine the changes in the blood compatibility of the mPE subjected to 

acid treatment. 
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1.4 Scope of Study  

 

 

This study consists of two parts. The first part of the study is focused mainly 

on the sample preparation, optimization of the nitric acid treatment on the mPE, and 

the characterization of mPE and HNO3 treated mPE surfaces. Various methods were 

utilized; contact angle, attenuated total reflectance Fourier Transform Infrared 

Spectroscopy (ATR-FTIR), 3D Hirox digital microscopy, scanning electron 

microscopy (SEM), and atomic force microscopy (AFM) for the determination of the 

surface characteristic of the mPE and HNO3 treated sample. To examine whether the 

HNO3 treatment affect the tensile strength, elastic modulus and break strength of 

mPE, mechanical testing of mPE and HNO3 treated mPE was compared.  

 

 

In the second part, blood coagulation assays were carried out. The reason for 

this step is to ascertain the thromboresistance property of mPE and HNO3 treated 

mPE surfaces when they are utilized as biomaterials, particularly for blood 

contacting devices. The blood coagulation assays like prothrombin test (PT), 

activated partial thromboplastin time (APTT), hemolysis assay (HA), and platelet 

adherence test is performed to investigate the blood compatibility of the mPE and 

HNO3 treated mPE. Protein adsorption assay was carried out for determining the 

specific proteins albumin and fibrinogen adsorption on mPE and HNO3 treated mPE. 

The mPE and the HNO3 treated mPE blood compatibility results were compared with 

the conventional blood contacting materials for positioning this research with related 

studies in this field.  

 

 

 

 

1.5 Significance of Study 

 

 

 The result of this study will provide an account on the improved blood 

compatibility of mPE by nitric acid treatment. In addition to that, the effect of the 

HNO3 on the mPE polymer which was performed for the first time may kindle the 

enthusiasm of the other researchers to further explore the alternative acids available, 

to enhance the blood compatibility of polymers. Besides that, as nitric acid is low in 
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cost, a cost effective method for the blood compatibility enhancement of polymers 

can be introduced.  

 

 

 

 

1.6 Thesis outline 

 

 

 This thesis is divided into five chapters. In Chapter 1, a brief explanation 

about the biomaterials and the research background of this study is given. Further, 

the objectives of this study have been presented in the context of solving the clinical 

complications mentioned. Finally, the importance of the proposed method and its 

influence in encouraging future researches is also projected. 

 

 

 In Chapter 2, a brief explanation about polymers and the problems observed 

during its contact with biological environment is summarized. In addition, the 

importance of surface modification techniques in solving those issues and some of 

the previous researches reported in that viewpoint is also discussed.  

 

 

In Chapter 3, the research methodology and characterization studies followed 

in this research are given in detail. The discussions mainly cover the particulars, 

procedures and the need for characterization studies.  

 

 

In Chapter 4, the results obtained from characterization and blood 

compatibility studies have been discussed and compared with the previous study’s 

results. This section is the heart of the thesis, since it evidently reflects the 

achievement and the effectiveness of proposed idea.  

 

 

In Chapter 5, a short summary of the whole work and its effectiveness in 

approaching blood compatibility problems are projected. Moreover, some suggestion 

about future research in the proposed perspective is also presented.  
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