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ABSTRACT 

Statistical process control chart is a common tool used for monitoring and 

detecting process variations. The process data streams, when graphically plotted on 

control chart reveal useful patterns. These patterns can be associated with possible 

assignable causes if properly recognized. These patterns detections are useful for 

process diagnostic. Different types of control chart pattern recognition methods are 

reported in literature. Most of the existing data-driven methods require a large 

amount for training data before putting into practice. Short production run and short 

product life cycle processes are usually constrained with limited data availability. 

Thus there is a need to investigate and develop an effective control chart pattern 

recogniser (CCPR) methods for process monitoring with limited data. Two methods 

were investigated in this study to recognize fully developed control chart patterns for 

process with limited data on X-bar chart. The first method was combination of 

selected run rules, as run rules do not require training data. Classifiers based on fuzzy 

set theory were the second method. The performance of these methods was evaluated 

based on percent correct recognition. The methods proposed in this study 

significantly reduced the requirements of training data. Different combination of 

Nelson’s run rules; R2,R5,R6 for shift and trend, R3,R5,R6 for cyclic, R4,R5,R8 for 

systematic and R7 for stratification patterns were found effective for recognizing.  

Differentiating between the shift and trend patterns remains challenging task for the 

run rules. Heuristic based Mamdani fuzzy classifier with fuzzy set simplification 

operations using statistical features gave more than ninety percent correct patterns 

recognition results. Adaptive neuro fuzzy inference system (ANFIS) fuzzy classifier 

with fuzzy c-mean using statistical features gave more prominent results. The 

findings suggest that the proposed methods can be used in short production run and 

the process with limited data. The fuzzy classifiers can be further studied for 

different input representation.   
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ABSTRAK 

Carta kawalan adalah teknik yang lazim digunakan untuk mengesan 
perubahan variasi di dalam proses. Data proses yang dicartakan secara grafikal dapat 
menyerlahkan corak variasi yang berguna. Corak-corak berkenaan boleh dikaitkan 
dengan penyebab masalah proses jika di kesan secara terperinci, dimana maklumat 
ini berguna untuk proses diagnostik. Terdapat pelbagai kaedah pengecaman pola 
carta kawalan yang telah dilaporkan di dalam literatur. Kebanyakan kaedah sediada 
memerlukan sejumlah data latihan yang besar sebelum pengecaman dapat 
dilaksanakan. Pengeluaran produk yang memiliki jangka hayat yang pendek 
selalunya menghadapi kekangan data yang tidak mencukupi untuk pengawasan 
proses. Oleh yang demikian,adalah perlu untuk menyiasat dan membangunkan teknik 
yang berkesan untuk pengecaman pola carta kawalan (CCPR) bagi pemerhatian 
proses yang  mempunyai data yang terhad. Dua kaedah telah dikaji untuk 
pengecaman pola pada carta kawalan x-bar yang telah berkembang sepenuhnya. 
Kaedah pertama menggunakan gabungan aturan larian (run rules) terpilih yang tidak 
memerlukan data latihan. Manakala,kaedah kedua adalah pengelasan pola 
berdasarkan teori set Fuzzy. Prestasi kaedah-kaedah yang dikaji dinilai berdasarkan 
peratusan ketepatan pengecaman. Kaedah pengecaman yang dicadangkan di dalam 
kajian ini berjaya mengelakkan dan mengurangkan keperluan data latihan. Dapatan 
kajian dapat dirumusakan kombinasi. Aturan Nelson R2,R5,R6 untuk corak anjakan 
dan trend, Aturan R3,R5,R6 untuk corak kitaran,Aturan R4,R5,R8 untuk corak 
sistematik and Aturan R7 untuk corak stratifikasi. Walubagaimanapun, kaedah aturan 
larian masih tidak mampu untuk membezakan sepenuhnya di antara pola anjakan dan 
trend. Kaedah heuristik Fuzzy Mamdani dengan data input ciri statistikal telah 
berjaya mengecam dengan ketepatan lebih daripada 90 peratus. Sistem inferens 
adaptif Neuro Fuzzy (ANFIS) dengan Fuzzy c-mean pula berjaya memberi keputusan 
yang lebih baik. Hasil kajian menunjukkan kaedah yang dicadangkan berkesan untuk 
digunakan dalam pengawasan dan diagnosis proses pengeluaran jangka singkat 
dengan data proses yang terhad. Kaedah pengelasan Fuzzy ini memerlukan kajian 
lanjutan untuk menilai keberkesanan kaeadah perwakilan input yang berlaianan.  
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CHAPTER 1 

INTRODUCTION 

1.1    Introduction 

The Shewhart control chart, developed in 1924, has been widely used in the 

quality control and monitoring of manufacturing processes. It is still one of the most 

valuable and important tool in statistical process control today. The control charts are 

useful in finding whether a process exhibit natural causes of variation or unnatural 

causes of variation. A process is marked out of control, when a point falls outside the 

required control limits. Previous points plotted on control chart, some time follow 

specific patterns. Some of patterns are called normal patterns and some are called 

abnormal patterns. Abnormal patterns are due to unnatural variations and provide 

important information regarding opportunities for process and product quality 

improvement. The occurrence of abnormal patterns specifies that a process is 

unstable, and corrective actions should be taken. to find out the root cause of 

variations (El-Midany et al.,  2010). Also it is clear that particular abnormal pattern 

on a control chart is often related to some specific set of assignable causes and these 

patterns give clues about root cause of the unnatural variations (Western Electric 

Company, 1958). Therefore, identification and analysis of abnormal patterns on 

control charts is an important characteristic of statistical process control, in order to 

diagnose the causes of out of control and unstable systems. Early detection of these 

abnormal patterns and corresponding diagnosis prevent catastrophic failures.  

Shewhart control chart by itself does not gives information about  patterns  

and corresponding causes because it ignores the previous points and only concern 

with present data points. To overcome this issue different methods have been 
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investigated by researchers, collectively called control chart pattern recognition 

(CCPR). The purpose of these methods are to analyse previous data points, in order 

to find information about what type of special causes are present for unnatural 

variations. The early methods to find out patterns on control chart reported in 

literatures are supplementary run rules methods. Some of well-known run rules 

reported in literature are Western Electric rules (Western Electric Company, 1958), 

Nelson rules (Nelson,  1984).  

Traditionally, SPC chart patterns have been analysed and interpreted 

manually by supplementary run rules. Due to popularity of expert systems in 1980s 

several researchers like Swift (1987) and Cheng (1989) proposed merge of statistical 

process control methods with expert system. Automatic pattern recognition is 

considered more superior as compared to manual methods. One of the early useful 

expert system tools is artificial neural networks (ANN) and several researchers use 

this tool for SPC chart pattern recognition. The inherent useful properties and 

capabilities of neural networks such as non-linearity, input-output mapping, 

adaptability and fault tolerance inspired the use of ANN many researcher (Haykin 

and Network, 2004) . Since then, many researchers have proposed various ANN-

based SPC chart pattern recognition schemes. 

The other soft computing techniques like fuzzy set theory as classifiers are 

proposed by limited researchers. Most of the previous fuzzy methods such as Zarandi 

et al. ,2008 is based on the run rules for detecting process stability only considering 

probability of different run rules. Limited work has been reported for control chart 

pattern recognition using fuzzy classifiers. Feature base fuzzy classifiers are limited 

in literature. The author found only one paper  by Wang and Kuo (2007) that has 

proposed wavelet features for classification of abnormal patterns. The author is 

unable to locate previous work on the hybrid methods like neuro-fuzzy and adaptive 

neuro-fuzzy for control chart pattern recognition using statistical features only. 

The Support vector machine method nowadays, gains popularity due to its 

generalization properties and good recognition accuracy is recently reported in 

literature. The hybrid support vector machine (SVM) along with fuzzy clustering 
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technique is also reported in the literature. The methods especially ANN and hybrid 

Adaptive neuro-fuzzy system require training data prior to application into practical 

problems. 

Two types of input data representation have been proposed in literatures. One 

is the raw data input representation which after normalizing and standardizing used 

directly for training and testing of ANN and other hybrid types of schemes. Second 

input representation of data is features based, in which suitable features are extracted 

from data, and these features are used for testing and training of the schemes. 

Different types of features have been proposed by various researchers. Shape 

features, statistical features and wavelet denoise features are famous in literatures. 

Some basic issues exist in control chart patterns recognition(CCPR) field described 

by Hachicha and Ghorbel (2012) and Masood and Hassan (2010). The process with 

limited data like short production runs needs suitable design of CCPR in terms of 

selection of methods and design of recognizers or classifiers. 

1.2     Problem Statement 

Control chart pattern recognition is important for process monitoring, because 

abnormal patterns recognition on control charts can lead to root of specific 

assignable causes. Majority of existing methods for CCPR such as ANN,SVM etc. 

require extensive training data before the recognizers implementation. Due to short 

product life cycle and corresponding short runs of products limited training data are 

usually available. The methods which required extensive data prior to application 

into real system have several issues due to limited data availability. The limitation of 

existing methods and problems in short production run are summarized below: 

 (a) Run rules can be used for short run and limited data as no training data is 

required. Contrasting views about run rules in literature is present about pattern 

recognition. Some researchers argued that run rules are not suitable for control chart 

pattern recognitions while some researchers recommended run rules for pattern 

identification. The run rules were used individually by many researchers in 
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literatures in order to increase sensitivity of control chart. Multiple run rules when 

applied simultaneously, may increases the false alarm. It is also reported in literature 

that runs rules do not identify pattern explicitly. Which run rules overlap for patterns 

and which are identified by run rules correctly also not investigated in literature.  

(b) The supervised ANN-based recognizer is suitable for mass production process 

due to sufficient data availability. Short production run and short product life cycle 

and corresponding limited data availability of processes lessen the effectiveness of 

ANN recognizer. There is need to investigate recognizing methods for control chart 

patterns (CCPs) with limited data. The soft computing methods based on fuzzy set 

theory still not widely investigated for short run processes. 

1.3     Research Objectives  

The main objectives of the project are stated below: 

(a)  To investigate and find suitable run rules combinations  for control chart patterns 

recognition focusing on limited process data.   

(b)  To design and develop control chart patterns recognizers for limited process data 

using fuzzy set theory. 

1.4     Research Questions  

The objectives discussed above can be strengthening if we formulate some 

basic questions. These questions when answered can significantly fulfil the research 

objective requirements. Some of the basic questions formulated are given below: 

Q1: Are run rules suitable for CCPR with limited data? 

Q2: Which combination of run rules is suitable to recognize various patterns? 

Q3: What are the limitations of run rules for CCPR? 

Q4: Which soft computing classifiers are suitable for limited data? 
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Q5: Which types of features are suitable for classifiers considering limited 

data? 

Q6: What is the suitable set of features for classifiers considering limited 

data? 

1.5     Scope of the Project  

This project is limited to the univariate pattern recognition generated in 

MATLAB environment using random generation techniques. The process mean is 

considered as main parameters of control and different patterns are generated only on 

X-bar Shewhart control charts for this  study. Only discrete component production is 

considered in this study. The main scope of the project is to simulate the control 

chart patterns in MATLAB using random generation techniques. The comparison of 

different run rules and feature base fuzzy CCPR methods will be compared to 

recognizer proposed in literature. The design includes selecting suitable combination 

of features and investigating membership function , IF-THEN rules for fuzzy base 

classifiers. The MATLAB software has been used for coding and programming 

purposes. The fully developed control chart patterns will be considered in this study 

only within window size of 20. 

Also we assumed that process is running normal. The sample size of five is 

considered. The averages of five and above is more sensitive to detect shift according 

to central limit theorem. Central limit theorem state that the distribution of sample 

averages is approximately behaving normal even if the population from which the 

sample is drawn is not normally distributed. The approximation improves as the 

sample size increaseses.( Benbow and Broome, 2009). 
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1.6     Importance of Study 

This research work intends to contribute to design and development of CCPR 

classifiers for limited data. This study is important since short product life cycle is 

becoming more common nowadays. 

1.7    Summary 

This chapter briefly explains the problem statement and objective of the 

project. First the background of the problem was discussed. Then problem statement, 

objectives and research questions were formulated. Also the scope of the projects 

was outlined. The next chapter described the literature review in detail. 
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