
DEVELOPMENT OF TRANSPARENT AND FLEXIBLE GRAPHENE COATED 

ELECTRODE 

 

 

 

 

 

 

 

 

 

NUR SUHAILI BINTI ISMAIL 

 

 

 

 

 

 

 

 

 

UNIVERSITI TEKNOLOGI MALAYSIA 



DEVELOPMENT OF TRANSPARENT AND FLEXIBLE GRAPHENE COATED 

ELECTRODE 

 

 

 

 

 

NUR SUHAILI BINTI ISMAIL 

 

 

 

 

 

A project report submitted in partial fulfilment of the 

requirement for the award of the degree of 

Master of Science (Materials Engineering) 

 

 

 

 

Faculty of Mechanical Engineering 

Universiti Teknologi Malaysia 

 

 

 

 

SEPTEMBER 2017 



iii 

 

 

 

 

 

 

 

 

 

 

 

 

To my dearest parents, family, friends, and you. 

I would not have made it this far without your support, guidance and love. 

May this knowledge be useful for others. 

 



iv 

ACKNOWLEDGEMENT  

 

 

 I appreciate the blessings of All-mighty Allah throughout the period of my 

master’s degree studies in UTM. I wish to express my sincere appreciation to my 

supervisor, Dr. Mohd Zamri Mohd Yusop for his mentorship and guidance from the 

beginning till the end of this journey. I am very fortunate to have such an amazing and 

generous supervisor who provided endless support along the way. 

 

Special thanks to all staffs at Nanolab T05, lecturers, classmates, postgraduate 

students and others who have provided great assistance at various occasions 

throughout the research works. Without them, this research would not be a success. I 

would also like to acknowledge Universiti Teknologi Malaysia for this opportunity. 

  

Finally, thank you to my family and friends for their continuous moral support, 

patience, sacrifice and encouragement.   



v 

ABSTRACT 

 

 

Conductive graphene coated film of rubber silicone polymer was prepared 

using the facile and simple spin coating technique. Graphene coated films have been 

studied tremendously worldwide and attracted much attention as they have great 

potential in flexible optoelectronic applications. Traditionally, Indium Tin Oxide 

(ITO) have been used for decades as electrodes but high mechanical brittleness of ITO 

makes it unsuitable for flexible devices. Thus, studies on finding the alternatives for 

ITO increase by time. In this present work, rubber silicone polymer was used as 

substrate due to its high transparency and flexibility while graphene was used as 

coating layer as it has great properties. The main aims of this project include to develop 

high conductivity electrode together with optimum aforementioned properties. 

Deposition of graphene solution was varied from 1 to 8 drop. Several parameters were 

used; dispersion duration (1 & 2.5 hours) and coating speed (500 & 1000rpm) obtain 

the best sample. Longer sonication time produced better dispersed graphene while 

lower coating speed resulted in better scattered graphene coating. In the present work, 

Sample 3 with 3 drops of graphene solution was found to have the best properties 

among all. Conductivity was set to be the most important property, hence was set as 

the first screening. The highest current value recorded was 0.2 x 102 A at V=10 

meanwhile for flexibility test, current value dropped by 100 times as resistivity 

increased. As drop number increased, the deposition of graphene on substrate 

increased causing the formation of graphite from graphene. This resulted in very low 

conductivity for Sample 6, 7, and 8 with current value ~1 x 10-9A which closed to 

reference sample with current value ~1 x 1010A. However, results obtained are 

respectively low compared to electrical properties of graphene from literature which 

will be further discussed in this report. Optical microscope image shows the presence 

of graphene but agglomeration was spotted on the substrate which explains the low 

current value in most samples.  
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ABSTRAK 

 

 

Polimer silikon getah disaluti graphene telah disediakan menggunakan teknik 

salutan ringkas. Filem bersalut graphene telah banyak dikaji di seluruh dunia dan 

menarik perhatian kerana mempunyai potensi besar dalam aplikasi optoelektronik 

fleksibel. Secara tradisinya, Indium Tin Oxide (ITO) telah digunakan selama beberapa 

dekad sebagai elektrod tetapi kerapuhan mekanikal yang tinggi menjadikannya tidak 

sesuai untuk peranti fleksibel. Oleh itu, kajian mencari alternatif untuk ITO bertambah 

mengikut masa. Dalam kerja ini, polimer silikon getah digunakan sebagai substrat 

kerana ketelusan dan kelenturannya yang tinggi manakala graphene digunakan sebagai 

salutan kerana ia mempunyai ciri-ciri yang hebat. Matlamat utama projek ini termasuk 

untuk menghasilkan elektrod berkonduktiviti tinggi. Jumlah titisan graphene 

dimanipulasi dari 1 hingga 8 titis. Beberapa parameter digunakan; tempoh penyebaran 

(1 & 2.5 jam) dan kelajuan salutan (500 & 1000rpm). Masa sonikasi yang lebih lama 

menghasilkan graphene yang lebih baik sementara kelajuan salutan yang lebih rendah 

menghasilkan salutan graphene yang lebih baik konsisten. Dalam kerja ini, Sample 3 

dengan 3 titisan titisan graphene didapati mempunyai sifat terbaik antara semua. 

Konduktiviti telah ditetapkan sebagai sifat yang paling penting, oleh itu telah 

ditetapkan sebagai pemeriksaan utama. Nilai arus tertinggi yang direkodkan ialah 0.2 

x 102 A pada V = 10 sementara untuk ujian fleksibiliti, nilai arus menurun sebanyak 

100 kali apabila resistiviti meningkat. Apabila jumlah titisan meningkat, pemendapan 

graphene pada substrat meningkat menyebabkan pembentukan graphite dari graphene. 

Ini mengakibatkan kekonduksian yang sangat rendah seperti Sampel 6, 7, dan 8 dengan 

nilai arus ~ 1 x 10-9 A yang hampi kepada sampel rujukan dengan nilai arus ~ 1 x 10-

10 A. Walau bagaimanapun, nilai arus yang diperoleh adalah rendah berbanding 

dengan sifat elektrik graphene dari literasi yang akan dibincangkan dalam laporan ini. 

Imej mikroskop optik menunjukkan kehadiran graphene tetapi aglomerasi dilihat pada 

substrat yang menerangkan nilai semasa yang rendah dalam kebanyakan sampel. 
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CHAPTER 1 

 

 

 INTRODUCTION 

 

 

1.1   Research Background   

 

Nowadays, great attention has been attracted to the synthesis of field emission 

display (FED) structures materials made from polymers due to their enhanced optical, 

electrochemical and electrical properties intrinsically associated with their low 

dimensionality. Materials with a remarkable combination of high electrical 

conductivity and optical transparency are important components of various 

optoelectronic devices such as organic light emitting diodes (OLEDs), energy storage 

and conversion (supercapacitors), batteries, fuel cells, solar cells, and 

bioscience/biotechnologies [1]. 

 

In the case of emission display, these components work as anodes to extract 

separated charge carriers from the absorbing region, while in the case of OLEDs, they 

inject charge carriers without affecting the light out-coupling efficiency. Traditionally, 

Tin-doped Indium Oxide (ITO) and Fluorine-doped Tin Oxide (FTO) have been used 

for most OLEDs for almost four decades. The ability to deposit these materials with 

controlled thickness and controlled doping concentration has significantly contributed 

to their widespread application [1,2]. 
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However, the next generation of optoelectronic devices requires transparent 

conductive electrodes (TCEs) to be lightweight, flexible, cheap, and compatible with 

largescale manufacturing methods, in addition to being conductive and transparent. 

These requirements severely limit the use of ITO as transparent conductors because 

ITO films fail under bending, restricting their use in flexible optoelectronic devices 

[2]. In addition, the limited availability of indium sources resulting in ever-increasing 

prices of indium creates an urgent need to find other materials that can work as 

transparent conductors for future optoelectronic devices [1]. 

 

The question arises: what materials can fulfil these requirements? Having 

realized the need to replace ITO, the research community has made significant 

advances in this direction, with identification and evaluation of potential candidate 

materials. The most significant materials among these are carbon nanotube (CNT) 

films, graphene films, metal gratings, and random networks of metallic nanowires [3]. 

Vis a vis, the study on the new contender; graphene, has increased exponentially since 

it was first isolated in 2004 as it has enhanced the behaviour of polymer especially in 

electronic applications.  

 

Graphene, a two-dimensional (2D) single layer building block for sp2 carbon 

allotropes, exhibits remarkable electronic and mechanical properties. The discovery of 

graphene has revolutionized the field of electronics owing to its excellent and 

mechanical stability and electronic properties such as high flexibility and optical 

transmittance, which paves the way for ultrafast electronic devices, bio- and chemical 

sensors graphene is a single sheet of sp2- bonded carbon atoms. As a zero band gap 

semiconductor, its electronic structure is unique in the sense that charge carriers are 

delocalized over large areas, making it a scattering-free platform for carrier transport. 

High Fermi-velocity and the ability to dope the graphene films externally result in 

extremely high in-plane conductivities [4].  

 

In this project, various properties of spin-coated graphene film on polymer 

substrate will be investigated. Conductive films with different layers were made by 

spin-coating graphene dispersed in dichloromethane (DCM) onto a rubber polymer 

substrate (1cm x 1cm).  Then their properties including morphological, compositional, 
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structural and optical properties of the nanocomposites will be characterized and 

further discussed.  

 

 

1.2   Research Motivation  

 

In spite of the tremendous progress of miniaturized electronic technology, 

further development to soft electronics is still limited by the rigidity of the materials 

themselves. Electronic devices on flexible and stretchable substrates, defined as soft 

electronics, are contrasted to traditional rigid chips using conventional substrates and 

metals. The strategies for developing soft electronics are driven by the investigation of 

new materials which are bendable, twistable, flexible and stretchable. Toward the basic 

requirement of replacing traditional rigid silicon electronics by new materials, 

structure engineering, such as structures in “wavy” layouts and the open mesh 

geometry have also been investigated to achieve stretchability.  

 

In recent years, graphene has been found as replacement to transparent 

conductive oxides such as FTO and ITO as flexible electrode displays. Graphene is 

expected to act as an excellent conducting transparent electrode material because of its 

extraordinary electrical, thermal, and mechanical properties including a carrier 

mobility exceeding 104 cm2/Vs and a thermal conductivity of 103 W/mK [5,7].  In this 

work, rubber silicon polymer is introduced as substrate, which meets aforementioned 

requirements of strong interaction and electrical conductivity.  Rubber has 

perfluoroalkyl backbones which have higher hydrophobicity than the traditional 

hydrocarbon-based surfactants and may have stronger interaction with graphene than 

other traditional surfactants.  

 

 

 

 

 

 



4 

 

1.3  Problem Statement  

 

ITO has dominated the transparent electrode market for several decades due to 

its high transparency and conductivity [1]. It is a commercially dominant transparent 

conductor with relatively high conductivity (sheet resistance of 10–20 Ω/cm) and 

transmission (>80%) in the visible region of the solar spectrum. However, brittleness, 

scarcity of indium and relatively high cost have hindered its application in the 

emerging fields, such as flexible, stretchable and wearable devices [2]. 

 

 

1.3.1 Increase in Price of Indium 

 

ITO is a ternary composition of indium, tin and oxygen in varying proportions. 

Depending on the oxygen content, it can either be described as a ceramic or alloy. 

Indium tin oxide is typically encountered as an oxygen-saturated composition with a 

formulation of 74% In, 18% O2, and 8% Sn by weight.at However, the scarcity of 

indium resources in the world and its high demand from the display industry has 

created large cost fluctuations and future supply concerns [2].  

 

An official report on the market trend of minerals United States Geological 

Survey (USGS) suggests that the price of indium increased by approximately 25% 

between 2010 and 2011 from $570/kg reaching a maximum of $780/kg in the U.S. 

while world-wide production of indium increased only by 5%. The price of indium has 

fluctuated anywhere between 10 and 40% annually in the past 5 years [2,4]. Apart 

from the volatility of indium prices, its incorporation in the processing of ITO requires 

high preparation temperatures and vacuum-based highly energy intensive deposition 

techniques such as sputtering, thus further increasing the cost of ITO. 
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1.3.2 Flexibility of ITO 

 

Despite its high conductivity and transparency, ITO is not flexible as it has high 

mechanical brittleness and will break under little strain that make it unsuitable for 

flexible electronic devices. Apart from that, it also has bad adhesion to organic and 

polymeric materials. Gu et al. deposited ITO layer on PET substrate and then the 

substrates were operated bending test (100 times) with various range to study the effect 

of cyclic bending on ITO films’ sheet resistance using four-point probe [6]. They 

reported that as the radius of bending test decreased, the reduction of device properties, 

such as current density, brightness, and quantum efficiency. They also found that the 

sheet resistance of ITO films increased as the radius of bending decreased (Figure 1.1), 

hence making it not feasible for flexible FEDs [6].  

 

 

 

Figure 1.1: Graph of Sheet Resistance against Radius [2] 

 

 

Thus, alternatives such as conducting polymers, carbon nanotubes, graphene, 

and metallic networks have been proposed where in this particular report will focus on 

graphene.  
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1.4   Research Objectives  

 

The objective is to prepare high transparency and flexibility graphene coated 

electrode using ion irradiation and spin coating methods. 

 

1. To study the effect on film transparency with respect to the amount of graphene 

dispersed on each sample. 

2. To obtain high conductivity of current improved by the graphene coating. 

3. To characterize the morphological, compositional, structural and optical properties 

of the structure. 

 

 

1.5   Research Scope  

 

The objective of the project can be obtained through the research scopes that 

outlined as follows: 

1. Fabrication of polymer sheet using polymer & Elastomer (Rubber Silicon 

Polymer) 

2. Coating the surface using spin coating technique 

3. Transparency and conductivity analysis  

4. Characterization of its mechanical properties 

 

 

1.6   Research Activities 

 

The implementation of this study has been summarized into a flowchart as 

shown in Figure 1.2. This study is focused on the preparation of the graphene coated 

substrate made from Silicon Rubber Polymer. Firstly, the preparation of the 

experimental setup is performed. Graphene then were dispersed in DCM. The film 

were prepared using spin coating method and its properties will be investigated by 

varying a few parameters such as amount of graphene dispersed and ultra-sonication 

time.  
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Next, the morphological of the film structures will be performed using Optical 

Microscope. Due to equipment’s availability issue and time constraint, 

characterization using SEM and TEM was not possible. Meanwhile, the electrical 

properties were characterized using 2 probe tester and the transparency were studied 

qualitatively. All data collected was analysed.  

 

 

  

  

 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Figure 1.2: Research Activities 

    

Preparation of experimental setup For Polymer/Gr 

Film   

Spin coating graphene onto substrate 

Characterization of the morphological, 

compositional, structural and optical spectra of 

Polymer/Gr structures using OM and 2 probe tester 

  ,   

  

.   

Silicon Rubber Substrate 

Preparation 
Dispersion of Gr 

Data collection analysis  
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 1.7  Significance of Research  

  

  This research addresses various electronic sectors’ strategic objectives. It 

includes achieving maximum plant useful life and cost/risk-focused decision making 

in regulation, operation, and design. This research also focuses on developing a 

methodology to address materials degradation/aging.  

The preparation technique can be a cost effective, less tedious method for real 

life applications. Conventional method such as using ITO is assumed to obsolete soon 

due to cases mentioned before. Thus, finding such alternatives is vital.   

 

 

1.8  Thesis Overview   

  

This thesis is organized into 5 chapters. Chapter 1 gives a brief introduction of 

the research background on the application of flexible devices, problem statements. 

The objectives, research scopes and research activities are also presented.  

  

Chapter 2 presents a comprehensive review of literature on the ITO and 

graphene properties together with their application. The first part of this chapter 

explains the structural, optical and electronic properties of ITO in order to provide in-

depth knowledge of ITO materials. Then it briefly explains the need to replace ITO 

and candidate materials in research world today. Method and application of  graphene 

then are discussed together with nanostructures.  

 

In chapter 3, the details of experimental procedures in this research are 

described. The substrate preparation and the experimental setup are explained in the 

first part. Second parts describe the coating procedure with its parameter. The 

characterization techniques and equipment used are mentioned in the last part.   

 

In chapter 4, results obtained from characterisations are analysed and discussed 

in details. The effect of drop numbers on samples conductivity and transparency are 

described which following the objectives of this project. Other than that, the effect of 
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flexibility on samples conductivity are also discussed. The last part shows the analysis 

of samples’ morphology. 

 

Finally, chapter 5 concludes the results obtained and discusses the future 

research directions.  
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