ISOLATION AND QUANTIFICATION OF FLAVONOIDS FROM LEAVES OF Moringa oleifera Lam AND ITS ANTIOXIDANT ACTIVITY

NURSHAHIRA BINTI MOHD ROZI

UNIVERSITI TEKNOLOGI MALAYSIA

ISOLATION AND QUANTIFICATION OF FLAVONOIDS FROM LEAVES OF Moringa oleifera Lam AND ITS ANTIOXIDANT ACTIVITY

NURSHAHIRA BINTI MOHD ROZI

A dissertation submitted in partial fulfilment of the requirements for the award of the degree of Master of Science (Chemistry)

Faculty of Science

Universiti Teknologi Malaysia

OCTOBER 2017

Special dedication to

My parents,

Mohd Rozi Bin. Hj. Ab. Malek

Andek Siti Aichah Binti Hj. Yakkob

My brother, Ahmad Shahir Bin Mohd Rozi

For all your patience and prayers.

Thank you.

ACKNOWLEDGEMENT

First of all, I took an enormous pleasure to acknowledge and extend my intense gratitude to my supervisor, Dr. Norazah Basar who gave me a vital encouragement, monitoring in every step throughout the project and giving an opportunity to complete my project under her supervision. Without her dedicated involvement, this project would have never been accomplished.

My deepest appreciation also goes to the laboratory staffs of Department of Chemistry, Faculty of Science, Mr. Azmi Md. Rais, Mr. Rasyidi Abd. Mubin and Madam Ramlah Hussin for their kind of support, assistance and patience. Thank you for making my journey in completing this project smoothly. Inconvenience regretted for not mentioning anybody in my acknowledgement. I also wish to extend my loving thanks to my coursemates and labmates who helped me stay through difficult years. Their meaningful advice along my journey was essential to complete my project.

Most importantly, my heartfelt thanks to my beloved parents Mr. Mohd Rozi Malek, Mdm. Andek Siti Aichah Yakkob and family member for their caring and numerous attention. They willing to provide and support me in everything I had done during up and down in my life especially my parents. I am run short of words in expressing my sincere gratefulness for their love and encouragement. I would not have made it this far without them.

Last but not least, I am highly thankful to the Ministry Education and State Government of Johor for granting me a scholarship to pursue my Master in Chemistry Science at Universiti Teknologi Malaysia.

ABSTRACT

Moringa oleifera Lam. (M. oleifera) which is also called "pokok kelor" is known to be a rich source of flavonoids. Three flavonoids known as isoquercetin, quercetin and kaempferol were isolated from the ethanolic extract of M. oleifera leaves. The compounds were elucidated using spectroscopic methods such as ¹H NMR, ¹³C NMR and FTIR. In a separate study, the different extraction methods of ethanolic extract including cold maceration, soxhlet, ultrasound-assisted by water bath and ultrasound-assisted by probe and solid phase extraction were done. The extracts were subjected to qualitative and quantitative analysis to determine the phytochemicals present in M. oleifera leaf. Qualitative analysis on the extracts showed that M. oleifera contains flavonoid, tannin, alkaloid, phenol, steroid, quinone and coumarin. The result of quantitative analysis was obtained by screening the ethanolic extract for antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl assay, 2,2'azino bis(3-ethylbenzothiozoline-6-sulfonic acid) and ferric reducing antioxidant power assay. Extract from Fraction 2 of solid phase exhibited highest antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl, 2,2'-azinobis(3-ethylbenzothiozoline-6-sulfonic acid) and ferric reducing antioxidant power assay with IC_{50} of 35.81 µg/mL, IC_{50} of 41.58 µg/mL and FRAP equivalent of 91.36 mM, respectively. Moreover, the extracts were further analysed using a reversed phase high performance liquid chromatography to quantify the contents of isoquercetin, quercetin and kaempferol. Quantification of isoquercetin, quercetin and kaempferol were found higher using solid phase extraction with 7.98%, 0.86% and 1.11% in w/w%, respectively. The validated HPLC method was effective and practical for quantification of isoquercetin, quercetin and kaempferol in M. oleifera leaf extracts.

ABSTRAK

Moringa oleifera Lam. (M. oleifera) turut dikenali sebagai "pokok kelor" terkenal dengan kekayaan sumber flavonoid. Tiga flavonoid iaitu isoquercetin, quercertin dan kaempferol telah diasingkan daripada ekstrak etanol daun M. oleifera. Semua sebatian telah dianalisis menggunakan kaedah spektroskopi seperti ¹H RMN, ¹³C RMN dan FTIR. Dalam kajian berasingan, kaedah pengekstrakan etanol yang berbeza termasuk rendaman, soxhlet, pengekstrakan berbantukan ultrabunyi oleh rendaman air, pengekstrakan berbantukan ultrabunyi oleh probe dan pengekstrakan fasa pepejal telah dilakukan. Analisis kualitatif dan kuantitatif telah dijalankan ke atas ekstrak bagi menentukan fitokimia yang terdapat dalam daun M. oleifera. Analisis kualitatif ke atas ekstrak menunjukkan bahawa M. oleifera mengandungi flavonoid, tanin, alkaloid, fenol, steroid, kuinon dan kumarin. Hasil analisis kuantitatif diperoleh melalui penyaringan ekstrak etanol untuk aktiviti antioksidan menggunakan ujian 2,2difenil-1-pikrilhidrazil, asid 2,2'-azinobis(3-etilbenzotiozolin-6-sulfonik) dan potensi antioksidan penurunan ferik. Ekstrak daripada Fraksi 2 pengekstrakan fasa pepejal menunjukkan aktiviti antioksidan tertinggi melalui ujian 2,2-difenil-1-pikrilhidrazil, asid 2,2'-azinobis(3-etilbenzotiozolin-6-sulfonik) dan potensi antioksidan penurunan ferik dengan nilai setiap satu IC₅₀ 35.81 µg/mL, IC₅₀ 41.58 µg/mL dan nilai FRAP 91.36 mM. Selain itu, ekstrak telah dianalisis dengan menggunakan kromatografi cecair prestatsi tinggi fasa terbalik untuk mengukur kandungan isoquercetin, quercetin dan kaempferol. Kuantiti isoquercetin, quercetin dan kaempferol didapati lebih tinggi menggunakan kaedah pengekstrakan fasa pepejal dengan nilai 7.98%, 0.86% dan 1.11% dalam w/w%. Pengesahan kaedah HPLC adalah berkesan dan praktikal untuk pengukuran kandungan isoquercetin, quercetin dan kaempferol dalam ekstrak daun M. oleifera.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xi
	LIST OF SCHEMES	xiii
	LIST OF FIGURES	xiv
	LIST OF ABBREVIATIONS/SYMBOLS	xvi
	LIST OF APPENDICES	xix
1	INTRODUCTION	
	1.1 Background of study	1
	1.2 Problem statement	2
	1.3 Objectives	3
	1.4 Scope of study	3
	1.5 Significance of study	4
2	LITERATURE REVIEWS	
	2.1 Overview	5
	2.1.1 The <i>Moringaceae</i> family	6
	2.1.2 Taxonomy of <i>Moringaceae</i>	6

2.2	Botanical description of Moringa oleifera Lam7		
2.3	Traditional usage of Moringa oleifera Lam		
2.4	Phytochemical screening of Moringa oleifera Lam		
2.5	Phytoche	emical studies of Moringa oleifera Lam	12
2.6	Biological studies of Moringa oleifera Lam		
	2.6.1	Antioxidant study	19
	2.6.2	Antibacterial study	21
	2.6.3	Anti-inflammatory study	23
	2.6.4	Other bioactivities study	24
2.7	Quantific <i>Lam</i> by H	cation on flavonoids of <i>Moringa oleifera</i> HPLC	25
RESU	ULTS ANI	D DISCUSSIONS	
3.1	Extractio	on methods on Moringa oleifera Lam	29
3.2	Phytochemical analysis of <i>Moringa oleifera Lam</i> 30		
3.3	Antioxid extracts	ant analysis of <i>Moringa oleifera Lam</i>	33
	3.3.1	DPPH activity of extracts	34
	3.3.2	ABTS activity of extracts	36
	3.3.3	FRAP activity of extracts	38
3.4	Isolation <i>Lam</i>	of compounds from Moringa oleifera	41
	3.4.1	Isoquercetin (41)	41
	3.4.2	Quercetin (8)	43
	3.4.3	Kaempferol (10)	45
3.5	HPLC an	alysis of Moringa oleifera Lam extracts	47
	3.5.1	Method validation on HPLC analysis of <i>Moringa oleifera Lam</i>	48
	3.5.2	HPLC quantification on <i>Moringa</i> oleifera Lam extracts	52
3.6	Correlati	on of antioxidant and HPLC analysis	55

4 METHODOLOGY

4.1	General r	nethodology of study	59
	4.1.1	Instrumentations	60
	4.1.2	Chemicals and reagents	60
	4.1.3	Plant materials	61
4.2	Extractio	n methods on Moringa oleifera Lam	61
	4.2.1	Cold maceration	62
	4.2.2	Ultrasound-assisted extraction by	62
		water bath	
	4.2.3	Ultrasound-assisted extraction by	62
		probe	
	4.2.4	Soxhlet extraction	63
	4.2.5	Solid phase extraction	63
4.3	Phytoche	mical screening on Moringa oleifera	64
	Lam		
	4.3.1	Flavonoid test	64
	4.3.2	Saponin test	64
	4.3.3	Tannin test	64
	4.3.4	Alkaloid (Wagner's test)	65
	4.3.5	Steroid (Salkowski test)	65
	4.3.6	Terpenoid test	65
	4.3.7	Quinone test	66
	4.3.8	Phenol test	66
	4.3.9	Coumarin test	66
	4.3.10	Cardiac glycoside test	66
4.4	Antioxid	ant activity of <i>Moringa oleifera Lam</i>	70
	4.4.1	DPPH activity	70
	4.4.2	ABTS activity	71
	4.4.3	FRAP activity	71
4.5		n and isolation of chemical constituents ves of <i>Moringa oleifera Lam</i>	72
	4.5.1	Isoquercetin (41)	74

4.5.2	Querceti	n (8)	75
4.5.3	Kaempfe	erol (10)	75
Standard p	oreparatio	n for HPLC analysis	76
4.6.1	Sample	preparation for HPLC analysis	76
4.6.2	U	1	76
4.6.3	Method	validation	77
	4.6.3.1	Linearity	77
	4.6.3.2	Precision	78
	4.6.3.3	Accuracy	78
	4.6.3.4	Limit of detection (LOD) and limit of quantification (LOQ)	78
	4.5.3 Standard p 4.6.1 4.6.2	4.5.3KaempfeStandard preparatio4.6.1Sample p4.6.2High Per Chromat4.6.3Method4.6.3.14.6.3.24.6.3.3	 4.5.3 Kaempferol (10) Standard preparation for HPLC analysis 4.6.1 Sample preparation for HPLC analysis 4.6.2 High Performance Liquid Chromatography (HPLC) conditions 4.6.3 Method validation 4.6.3.1 Linearity 4.6.3.2 Precision 4.6.3.3 Accuracy 4.6.3.4 Limit of detection (LOD) and

5 CONCLUSION AND RECOMMENDATIONS

5.1	Conclusion	80
5.2	Recommendations	81
REFERENCES		82
APPENDICES		

LIST OF TABLES

TABLE	TITLE	PAGE
NO.		
3.1	Qualitative screening of phytochemicals in M. oleifera leaf	32
3.2	Classification of antioxidant activity by Blois	33
3.3	Concentration needed to scavenge 50% of antioxidant activity	35
3.4	IC ₅₀ values of extracts	38
3.5	FRAP value of samples and ascorbic acid	40
3.6	Comparison on ¹ H and ¹³ C NMR data of compound (41) and isoquercetin	43
3.7	Comparison on 1 H and 13 C NMR data of compound (8) and quercetin	45
3.8	Comparison on ¹ H and ¹³ C NMR data of compound (10) and kaempferol	47
3.9	Correlation coefficient (R ²) of calibration curve of standard compounds	49
3.10	Percent recovery of standard compounds	50
3.11	Intra and inter precision of standard compounds	50
3.12	Limit of detection and quantification of standard compounds	51
3.13	Retention time of standard compounds	52
3.14	Quantification of isoquercetin (41) in different extraction methods	54
3.15	Quantification of quercetin (8) in various extraction methods	54

3.16	Quantification of kaempferol (10) in different extraction	55
	methods	
4.1	Yield of extracts from different extraction methods	61
4.2	Fractions of solid phase extraction	63

LIST OF SCHEMES

SCHEME	TITLE	PAGE
NO.		
3.1	Reduction of DPPH radical	35
3.2	ABTS reaction	
3.3	Reduction of FRAP activity	39

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	Taxonomy family of <i>Moringaceae</i>	6
2.2	Whole plant of <i>M. oleifera</i>	7
2.3	Part of <i>M. oleifera</i> plant	7
3.1	Trend in percentage yield of extracts based on different	30
	extraction methods	
3.2	DPPH radical scavenging activity	36
3.3	ABTS antioxidant activity	38
3.4	Trend of ferric reducing power	40
3.5	Calibration curve of standard compounds	49
3.6	Chromatogram of mixture of standard compounds	51
3.7	Chromatogram of compounds of SPE F2 extract	53
3.8	Chromatogram of compounds of SPE F3 extract	54
3.9	Comparison on DPPH and ABTS activity on various extracts	56
3.10	Comparison on FRAP activity on various extracts	56
3.11	Composition of flavonoids in different extracts of dried leaves	57
4.1	Flavonoid test	67
4.2	Tannin test	67
4.3	Alkaloid (Wagner's test)	68
4.4	Steroid test	68
4.5	Terpenoid test	68
4.6	Quinone test	69
4.7	Phenol test	69

4.8	Coumarin test	69
4.9	Preparation of FRAP reagent	72
4.10	Extraction process	73

LIST OF ABBREVIATIONS/SYMBOLS

AA	-	Ascorbic acid
ABTS	-	2,2'-azinobis(3-ethylbenzothiozoline-6-sulfonic acid)
ASE	-	Accelerated solvent extraction
с	-	y-intercept
°C	-	Degree celcius
¹³ C NMR	-	Carbon Nuclear Magnetic Resonance
cm ⁻¹	-	Per centimeter
δ	-	Chemical shift
d	-	Doublet
dd	-	Doublet of doublet
DPPH	-	2,2-diphenyl-1-picrylhydrazyl
EBV-EA	-	Epstein-Barr Virus
FRAP	-	Ferric reducing antioxidant power
FTIR	-	Fourier Transform Infrared Spectroscopy
g	-	Gram
¹ H NMR	-	Proton Nuclear Magnetic Resonance
H	-	Hydride
H_2SO_4	-	Sulphuric acid
HCl	-	Hydrochloric acid
Hz	-	Hertz
IC ₅₀	-	Concentration of substrate required to scavenge 50%
ICH	-	of inhibition The International Conference on Harmonisation of Technical Requirements for Pharmaceuticals for Human Use
J	-	Coupling constant

kHz	-	Kilo Hertz
L	-	Liter
Lit	-	Literature
LOD	-	Limit of detection
LOQ	-	Limit of quantification
MAC	-	Maceration
MAE	-	Microwave assisted extraction
MeOH	-	Methanol
Methanol-d ₄	-	Deuterated methanol
MHz	-	Mega Hertz
μg	-	Microgram
μL	-	Microliter
μm	-	Micrometer
mg	-	Milligram
mL	-	Milliliter
mm	-	Millimeter
mM	-	Millimolar
mins	-	Minutes
m	-	Multiplet
NaOH	-	Sodium hydroxide
nm	-	Nanometer
-OH	-	Hydroxyl
PLE	-	Pressurized liquid extraction
ppm	-	Part per million
\mathbb{R}^2	-	Correlation coefficient
\mathbf{R}_{f}	-	Retention factor
RP HPLC-DAD	-	Reversed phase High Performance Liquid
RSD	-	Chromatography with diode array detector Relative standard deviation
RSM	-	Response surface methodology
SD	-	Standard deviation
Sephadex LH-20	-	Silica gel

SFE	-	Supercritical fluid extraction
σ	-	Standard deviation of response
SOXH	-	Soxhlet
SPE	-	Solid phase extraction
t	-	Triplet
TFA	-	Trifluoroacetic acid
TLC	-	Thin layer chromatography
TPTZ	-	2,4,6-Tri(2-pyridyl)-s-triazine
UAE	-	Ulrasound-assisted extraction
v/v	-	Volume per volume
w/w	-	Weight per weight
w/v	-	Weight per volume
Х	-	Concentration
У	-	Peak area

LIST OF APPENDICES

APPENDIX NO.	TITLE	PAGE
1	DPPH study of extracts	93
2	ABTS study of extracts	94
3	FRAP study of extracts	95
4	FTIR spectra of isoquercetin (41)	96
5-7	¹ H NMR spectrum of isoquercetin (41)	97
8	¹³ C NMR spectrum of isoquercetin (41)	100
9	FTIR spectra of quercetin (8)	101
10 - 11	¹ H NMR spectrum of quercetin (8)	102
12	¹³ C NMR spectrum of quercetin (8)	104
13	FTIR spectra of kaempferol (10)	105
14 – 15	¹ H NMR spectrum of kaempferol (10)	106
16	¹³ C NMR spectrum of kaempferol (10)	108
17 – 18	Formula on HPLC	109
19 - 21	HPLC chromatogram of different extract of M. oleifera	111
	leaf	

CHAPTER 1

INTRODUCTION

1.1 Background of study

Modern chemistry has opened a new era of the uses of natural products. In conjunction with the plentiful amount of biologically active compound found for therapeutic uses, Malaysia that prolific in plant diversity has been enrolled actively in the correlative research project. Therefore, herbal plants are still trustworthy as one of alternative way in medicinal field [1]. One of the notable medicinal plant is *Moringa oleifera Lam*. The *M. oleifera* is widely known as '*pokok kelor*' in Malaysia belonging to the *Moringaceae* family.

The *M. oleifera* is proved their medicinal properties or traditional uses in human life. Every part of the plant had its own beneficial uses. It can be used as a cure for malnutrition and constipation. The uses of *M. oleifera* not only limited in medicinal field since it also can be used in purification of water [2]. Of all parts of the plant, the leaf of *M. oleifera* has been subject of extensive chemical investigation due to its high benefit values. The flavonoid of *M. oleifera* present remarkable medicinal properties and related with various biological activities.

There are several method can be employed to extract crude from herbs and plants such as percolation, soxhlet extraction, cold maceration and others. However, the current focus of this study is on cold maceration, soxhlet extraction, ultrasoundassisted extraction (by probe and water bath) and solid phase extraction. The work flows of this study involved sample collecting, extraction, isolation, purification, bioactivities and analytical study.

In this study, different extraction method becomes the parameter in optimization of highest flavonoid contents. Phytochemical screening, antioxidant activity and quantification by RP HPLC-DAD were pursued to analyse the flavonoids efficiently. Qualitative analysis of chemical constituents were identified through phytochemical preliminary. The most potent antioxidant activity was determined through antioxidant assay. In order to enhance the optimization, RP HPLC-DAD was carried out to identify more accurately the flavonoid compositions in each of extract quantitatively.

1.2 Problem statement

Nowadays, the concern of people in order to achieve healthy lifestyle increased the demand of plants and herbs rapidly. Malaysia is recognised as one of 12 mega diverse countries around the world that rich in biological resources especially with medicinal plants and herbs. *M. oleifera* is listed among the Malaysian Herbal in National Key Economic Area (NKEA) [3]. Furthermore, this proposed research would produce a scientific analysis which will synchronize with government initiatives in developing herbal industry towards producing surpassing herbal products via amelioration of science and technology.

The extract from *M. oleifera* may contribute to medicinal, skincare uses and Malaysian economy. However, *M. oleifera* (*pokok kelor*) is one of medicinal plant that

do not fully utilize and explore in Malaysia. This is the reason in choosing *M. oleifera* as our interest in this study. The problem involved in this study was related with the extraction method which is emphasized on cold maceration, soxhlet extraction, ultrasound-assisted extraction (by probe and water bath) and solid phase extraction.

Some researcher stated that the cold maceration and soxhlet extraction gave low percentage yield of extract as compared with solid phase and ultrasound-assisted extraction method. Extract of soxhlet and solid phase extraction gave low antioxidant activities as compared with extract of cold maceration [4]. This study will provide a results on extract that having a high percentage yield, flavonoid compositions and antioxidant activities level.

1.3 **Objectives**

The purposes of this study were stated as below:

- 1. To extract the *M. oleifera* leaf using different extraction methods.
- 2. To identify the presence of constituents through phytochemical screening and evaluate the extracts for antioxidant activities.
- 3. To isolate and elucidate flavonoids of *M. oleifera* leaf by column chromatography.
- 4. To quantify the presence of flavonoids in *M. oleifera* extracts by RP HPLC-DAD.

1.4 Scope of study

This study focused on the optimization, quantification of phytochemical constituents, antioxidant activities and isolation of *M. oleifera* using different

extraction methods. Optimization was done using different methods such as cold maceration, soxhlet extraction, solid phase extraction and ultrasound-assisted (by water bath and probe).

The identification of flavonoids and other phytochemical constituents were obtained from phytochemical screening. The antioxidant activities of each extracts of *M. oleifera* were determined and studied. The study on DPPH scavenging assay, ABTS and FRAP of the extracts were carried out to determine the highest antioxidant activities level.

The leaf of *M. oleifera* was extracted by using cold maceration and followed by liquid-liquid partition. The flavonoids of *M. oleifera* were isolated through column chromatography. Characterization of the compounds were done by FTIR, ¹H NMR and ¹³C NMR. Quantification of flavonoids on extracts were done by RP HPLC-DAD.

1.5 Significance of study

Application of various type of extraction methods which are applied in this study will assist to identify the highest antioxidant activity and flavonoid of extracts. The output from this study could be used as a guidance for further optimization and application of *M. oleifera* leaf in nutraceutical, pharmaceutical and cosmetic production. Other than that, this study will contribute in enhancing efforts of government in elevating herbal industries.

REFERENCES

- 1. Abalaka, M. E. (2009). Evaluation of acute toxicity of *Momordica charantia* extract, using wistar rats to determine safety level and usefulness of the plant ethnochemotheraphy. *Int. J. Appl. Sci.* **3**, 1-6.
- US, D. (2015). Classification for kingdom plantae down to species *Moringa* oleifera Lam. Retrieved on July 28, 2017 from https://plants.usda.gov/java/ ClassificationServlet?source=display&classid=MOOL
- Kementerian Pertanian dan Industri Asas Tani Malaysia (2017). NKEA sektor pertanian. Retrieved on August 3, 2017 from http://www.moa.gov. my/nkea-sektor-pertanian.
- Azwanida, N. (2015). A review on the extraction methods use in medicinal plants, principle, strength and limitation. *Med. Aromat. Plants.* 4 (196), 2167-0412.
- 5. Kelly, K. (2009). The history of medicine fact on file. *In The History of Medicine*, 29-50.
- 6. Helmuth, M. B. (1963). A history of antibiotics. *In miracle drugs*, 23-139.
- 7. Khawaja, T., Tahira, M. dan Ikram, U. (2010). *Moringa oleifera*: a natural gift
 A review. J. Pharm. Sci. Res. 2, 81-775.
- 8. Fahey, J. (2005). *Moringa oleifera*: A review of the medicinal evidence for its nutritional, therapeutic and prophylactic properties. *J. Trees Life*, 1-5.
- Hensleigh, T. (1988). Agroforestory species for the Philippines. (No. 631.5809599 A281). Peace Corps, Washington, DC (EUA).
- 10. Survival, G. (2015). *Moringa oleifera*. Retrieved on August 3, 2017 from http ://survivalgardener.com/2015/11/how-to-make-*moringa*-powder/

- Zion, H. (2017). Zion Herbal. Retrieved on August 3, 2017 from https://zion herbals.com/product/moringa-leaf-powder-*moringa-oleifera*/
- 12. Vita, M. (2017). *Moringa oleifera* seeds. Retrieved on August 3, 2017 from http://www.vitamoringa.nl/english/product/*moringa-oleifera*-seeds/
- Specialty, P. (2017). *Moringa oleifera's* drumstick pods. Retrieved on August
 3, 2017 from http://www.specialtyproduce.com/produce/Drumstick_11503.p
 hp
- 14. Odee, D. (1998). Forest biotechnology research in drylands of Kenya: the development of *Moringa* species. *Dryland Biodiversity*. **2**, 7-8.
- 15. Hamza, A. (2010). Ameliorative effects of *Moringa oleifera Lam* seed extract on liver fibrosis in rats. *Food and Chemical Toxicology*. **48** (1), 345-355.
- 16. Anwar, F., Latif, S., Ashraf, M. and Gilani, A. (2007). *Moringa oleifera*: a food plant with multiple medicinal uses. *Phytotherapy research.* **21** (1), 17-25.
- Estrella, M., Jacinto Bias III, V., David, G. and Taup, M. (2000). A double blind, ramdomnized controlled trial on the use of *malunggay* (*Moringa oleifera*) for augmentation of the volume of breastmilk among non-nursing mothers of preterm infants. J. Phillip. Pediatr. 49, 6-39.
- 18. Dillard, C. and German, J. (2000). Phytochemicals: nutraceuticals and human health. *Journal of the Science of Food and Agiculture*. **80** (12), 1744-1756.
- Shehata, S., Badr, S. and Wahba, S. (2002). Drinking water treatment options for eliminating freshwater algae. *International journal of environmental studies.* 59 (6), 679-688.
- 20. Majhi, S. (2013). Nutritional Value of *Moringa Oleifera* as a Dietary Supplement. *Doctoral dissertation*.
- Azad, A., Rasul, M., Khan, M., Subhash, C. and Rubayat, I. (2015). Prospect of *Moringa* seed oil as a sustainable biodesel fuel in Australia: A review. *Procedia Engineering*. 105, 601-606.

- Paliwal, R., Sharma, V. and Pracheta, J. (2011). A review on horse radish tree (*Moringa oleifera*): A multipurpose tree with high economic and commercial importance. *Asian journal of Biotechnology*. 3 (4), 317-328.
- Oluduro, A. (2012). Evaluation on antimicrobial properties and nutritional potentials of *Moringa oleifera Lam* leaf in South-Western Nigeria. *Malaysian Journal of Microbiology*. 8 (2), 59-67.
- Sreelatha, S. and Padma, P. (2009). Antioxidant activity and total phenolic content of *Moringa oleifera* leaves in two stages of maturity. *Plant foods for human nutrition.* 64 (4), 303
- 25. Rasha, S., Loshini, A., Jiyauddin, K., Eddy, Y. and Fadli, A. (2014). Phyto chemical screening and antibacterial activity of five Malaysian medicinal plants. *British Journal of Pharmaceutical Research*. **4** (17), 2019-2032.
- 26. Azubuogu, C. (2012). *Phytochemical analysis on Moringa oleifera and Azadrichata indica leaves*. Caritas University Enugu Nigeria: Faculty of engineering.
- Krishnaiah, D., Devi, T., Bono, A. and Sarbartly, R. (2009). Studies on phytochemical constituents of six Malaysian medicinal plants. *Journal of medicinal plants research.* 3 (2), 67-72.
- Roopalatha, U. and Nair, V. (2013). Phytochemical analysis of successive reextracts of the leaves of *Moringa oleifera Lam. Int. J. Pharm. Sci.* 5 (3), 629-634.
- Abdulkadir, I., Nasir, I., Sofowora, A., Yahaya, F., Ahmad, A. and Hassan, I. (2015). Phytochemical screening and antimicrobial activities of ethanolic extracts of *Moringa oleifera Lam* on isolates of some pathogens. *J. Appl. Phar.* 7, 203.
- Kerharo, P. (1969). Un remede populaire Sengalais: Le Nebreday (Moringa oleifera lann.) employs therapeutiques en milieu Africain chimie et pharmacologie. Plantes Med. Phytother. 3, 14-219.
- Faizi, S., Siddiqui, B., Saleem, R., Siddiqui, S., Aftab, K. and Gilani, A. (1994).
 Isolation and elucidation of new nitrila and mustard oil glycosides from

Moringa oleifera and their effect on blood pressure. Journal of Natural Products. 57 (9), 1256-1261.

- Sahakitpichan, P., Mahidol, C., Disadee, W., Ruchirawat, S. and Kanchanapoom, T. (2011). Unusual glycosides of pyrrole alkaloid and 4'hydroxyphenylethanamide from leaves of *Moringa oleifera*. *Phytochemistry*. 72 (8), 791-795.
- Faizi, S., Siddiqui, B., Saleem, R., Noor, F. and Husnain, S. (1997). Isolation ans structure elucidation of a novel glycoside niazidin from the pods of *Moringa oleifera* 1. *Journal of Natural Products*. 60 (12), 1317-1321.
- Lalas, S. and Tsaknis, J. (2002). Extraction and identification of natural antioxidant from the seeds of the *Moringa oleifera* tree variety of Malawi. *Journal of the American Oil Chemists' Society.* **79** (7), 677-683.
- 35. Siddhuraju, P. and Becker, K. (2003). Antioxidant properties of various solvent extracts of total phenolic constituents from three agroclimatic origins of drumstick tree (*Moringa oleifera Lam*) leaves. *Journal of agricultural and food chemistry.* **51** (8), 2144-2155.
- 36. El Sohaimy, S., Hamad, G., Mohamed, S., Amar, M. and Al-Hindi, R. (2015). Biochemical and functional properties of *Moringa oleifera* leaves and their potential as a functional food. *Global Advanced Research Journal of Agricultural Science*. **4** (4), 188-199.
- Manguro, L. and Lemmen, P. (2007). Phenolics of *Moringa oleifera* leaves. *Natural Product Research.* 21 (1), 56-68.
- Vongsak, B., Sithisarn, P. and Gritsanapan, W. (2013). Simultaneous HPLC quantitative analysis of active compounds in leaves of *Moringa oleifera Lam*. *Journal of Chromatographic Science*. 52 (7), 641-645.
- Ragasa, C., Medecilo, M. and Shen, C. (2015). Chemical constituents of Moringa oleifera Lam leaves. Der. Pharma. Chemic. 7 (7), 395-399.
- 40. Guevera, A., Vargas, C., Sakurai, H., Fujiwara, Y., Hashimoto, K., Maoka, T. and Nishino, H. (1999). An antitumor promoter from *Moringa oleifera Lam*.

Mutation Research/Genetic Toxicology and Environmental Mutagenesis. **440** (2), 181-188.

- 41. Yammenart, D., Chavasiri, W. and Pongrapeeporn, K. (2008). Chemical constituents of *Moringa oleifera Lam. In The Science forum.* **3**, 80-81.
- 42. Singh, B., Singh, B., Singh, R., Prakash, D., Dhakarey, R., Upadhyay, G. and Singh, H. (2009). Oxidative DNA damage protective activity, antioxidant and anti-quorum sensing potentials of *Moringa oleifera*. *Food and Chemical Toxicology*. **47** (6), 1109-1116.
- Verma, A., Vijayakumar, M., Mathela, C. and Rao, C. (2009). In vitro and in vivo antioxidant properties of different fractions of *Moringa oleifera* leaves. *Food and Chemical Toxicology*. 47 (9), 2196-2201.
- Palafox, J., Navarrete, A., Sacramento-Rivero, J., Rubio-Atoche, C., Escoffie,
 P. and Rocha-Uribe, J. (2012). Extraction and characterization of oil from *Moringa oleifera* using supercritical CO2 and traditional solvents. *American Journal of Analytical Chemistry*. 3 (12), 946.
- 45. Ragasa, C., Ng, V. and Shen, C. (2016). Chemical constituents of *Moringa oleifera Lam* seeds. *Int. J. of Phar. and Phy. Res.* **8** (3), 495-498.
- Villasenor, I., Finch, P., Lim-Sylianco, C. and Dayrit, F. (1989). Structure of a mutagen from roasted seeds of *Moringa oleifera*. *Carcinogenesis*. 10 (6), 1085-1087.
- 47. Bennet, R., Mellon, F., Foidl, N., Pratt, J., Dupont, M., Perkins, L. and Kroon, P. (2003). Profiling glucosinolates and phenolics in vegetative and reproductive tissues of the multi-purpose trees *Moringa oleifera L*. (horseradish tree) and *Moringa stenopetala L. Journal of agricultural and food chemistry.* 51 (12), 3546-3553.
- Ogunbinu, A., Flamini, G., Cioni, P., Adebayo, M. and Ogunwande, I. (2009). Constituents of *Cajanus cajan (L.) Millsp., Moringa oleifera Lam., Heliotropium indicum L.* and *Bidens pilosa L.* from Nigeria. *Natural product communications.* 4 (4), 573-578.

- 49. Nepolean, P., Anitha, J. and Emilin, R. (2009). Isolation, analysis and identification of phytochemicals of antimicrobial activity of *Moringa oleifera Lam. Current biotica.* 3 (1), 33-37.
- Qwele, K., Hugo, A., Oyedemi, S., Moyo, B., Masika, P. and Muchenje, V. (2013). Chemical composition, fatty acid content and antioxidant potential of meat from goats supplemented with *Moringa oleifera* leaves, sunflower cake and grass hay. *Meat Science*. 93 (3), 455-462.
- 51. Shih, M., Chang, C., Kang, S. and Tsai, M. (2011). Effect of different parts (leaf,stem and stalk) and seasons (summer and winter) on the chemical compositions and antioxidant activity of *Moringa oleifera*. *International journal of molecular sciences*. **12** (9), 6077-6088.
- 52. Vongsak, B., Sithisarn, P., Mangmool, S., Thongpraditchote, S., Wongkrajang , Y. and Gritsanapan, W. (2013). Maximizing total phenolics, total flavonoids contents and antioxidant activity of *Moringa oleifera* leaf extract by the appropriate extraction method. *Industrial crops and products.* **44**, 566-571.
- Fitriana, W., Ersam, T., Shimizu, K. and Fatmawati, S. (2016). Antioxidant activity of *Moringa oleifera* extracts. *Indonesian Journal of Chemistry*. 16 (3), 297-301.
- 54. Nazmy, S., Hassan, B., Nihad, A., Abeer, E., Elhamid, E. and Farid, M. (2016).
 Biochemical studies on *Moringa oleifera* leaves extract. *Journal of Biology, Agriculture and Healthcare.* 6 (16), 34-42.
- 55. Pakade, V., Cukrowska, E. and Chimuka, L. (2013). Comparison of antioxidant activity of *Moringa oleifera* and selected vegetables in South Africa. *South African Journal of Science*. **109** (3-4), 1-5.
- Tekle, E., Sahu, N. and Makesh, M. (2015). Antioxidative and antimicrobial activities of different solvent extracts of *Moringa oleifera*: an in vitro evaluation. *International Journal of Scientific and Research Publications*. 5 (5), 255-266.
- Nikkon, F., Saud, Z., Rehman, M. and Haque, M. (2003). In vitro antimicrobial activity of the compound isolated from chloroform extract of *Moringa oleifera Lam. Pak. J. Biol. Sci.* 22, 1888-1890.

- Eilert, U., Wolters, B. and Nahrstedt, A. (1981). The antibiotic principle of seeds of *Moringa oleifera* and *Moringa stenopetala*. *Planta medica*. 42 (05), 55-61.
- 59. Mehta, K., Balaraman, R., Amin, A., Bafna, P. and Gulati, O. (2003). Effect of fruits of *Moringa oleifera* on the lipid profile of normal and hypercholestrolaemic rabbits. *Journal of ethnopharmacology*. 86 (2), 191-195.
- Nwosu, M. and Okafor, J. (1995). Preliminary studies of the antifungal activities of some medicinal plants against *Basidiobolus* and some other pathogenic fungi. *Mycoses.* 38 (5-6), 191-195.
- Spiliotis, V. and Lalas, S. (1998). Comparison of antimicrobial activity of seeds of different *Moringa oleifera* varieties. *Pharmaceutical and pharma cological letter*. 8 (1), 39-40.
- Doughari, J., Pukuma, M. and De, N. (2007). Antibacterial effects of Balanites aegyptiaca L. Drel. and Moringa oleifera Lam. on Salmonella typhi. African Journal of biotechnology. 6 (19), 2212-2215.
- 63. Nantachit, K. (2006). Antibacterial activity of the capsules of *Moringa oleifera Lam. (Moringaceae). CMU. J.* **5** (3), 365-368.
- Rahman, M., Akhter, S., Jamal, M., Pandeya, D., Haque, M., Alam, M. and Rahman, A. (2010). Control of coliform bacteria detected from diarrhea associated patients by extracts of *Moringa oleifera*. *Nepal Medical College Journal*. 12 (1), 12-19.
- 65. Dahot, M. U. (1998). Antimicrobial activity of small protein of *Moringa oleifera* leaves. *Journal of the Islamic Academy of Sciences*. **11** (1), 6.
- Caceres, A., Saravia, A., Rizzo, S., Zabala, L., De Leon, E. and Nave, F. (1992). Pharmacologie properties of *Moringa oleifera*. 2: Screening for antipasmodic, antiinflammatory and diuretic activity. *Journal of Ethnopharmacology*. 36 (3), 233-237.
- Medhi, B., Khanikor, H. N., Lahon, L. C., Mohan, P. and Barua, C. C. (1996). *International journal of Pharmacognosy.* 34 (3), 207-212.

- Ndiaye, M., Dieye, A., Mariko, F., Tall, A., Sall, D. and Faye, B. (2001).
 Contribution to the study of the anti-inflammatory activity of *Moringa oleifera* (*Moringaceae*). *Dakar Medical.* 47 (2), 210-212.
- 69. Mahajan, S., Mali, R. and Mehta, A. (2007). Effect of *Moringa oleifera Lam* seed extract on toluene diisocyanate-induced immune-mediated inflammatory responses in rats. *Journal of immunotoxicology*. **4** (2), 85-96.
- Anonymous (1988). The Wealth of India, Raw materials, Council of Scientific and Industrial Research, New Delhi, 2B,1-38.
- Mahajan, S., Banerjee, A., Chauhan, B., Padh, H., Nivsarkar, M. and Mehta, A. (2009). Inhibitory effect of n-butanol fraction of *Moringa oleifera Lam*. seeds on ovalbumin-induced airway inflammation in a guinea pig model of asthma. *International journal of toxicology*. 28 (6), 519-527.
- Faizi, S., Siddiqui, B., Saleem, R., Aftab, K. and Shaheen, F. (1998). Hypotensive constituents from the pods of *Moringa oleifera*. *Planta Medica*. 64 (03), 225-228.
- Faizi, S., Siddiqui, B., Saleem, R., Siddiqui, S. and Aftab, K. (1995). Fully acetylated carbamate and hypotensive thiocarbamate glycosides from *Moringa oleifera*. *Phytochemistry*. **38** (4), 957-963.
- 74. Gilani, A., Aftab, K., Shaheen, F., Siddiqui, B., Siddiqui, S., Saleem, R. and Faizi, S. (1992). Antipasmodic activity of active principle from *Moringa oleifera*. *Natural drugs and the digestive tract, Capasso F, Mascolo N (eds)*. *EMSI: Rome*, 60-63.
- Makonnen, E., Hunde, A. and Damecha, G. (1997). Hypoglyceamic effect of Moringa oleifera aqueous extract in rabbits. *Phytotherapy Research*. 11 (2), 147-148.
- Chopra, R. (1958). Chopra's indigeneous drugs of India, UN Dhur & Sons Pvt Ltd. *Calcutta*. 12, 495.
- Prakash, A., Pathak, S., Shukla, S. and Mathur, R. (1986). Uterinehistoarchitecture during pre and post-implantation periods of rats treated with

aqueous extract of *Moringa oleifera Lam. Acta Europaea Fertilitatis.* **18** (2), 129-135.

- Shukla, S., Mathur, R. and Prakash, A. (1989). Histoarchitecture of the genital tract of ovariectomized rats treated with an aqueous extract of *Moringa oleifera* roots. *Journal of Ethnopharmacology*. 25 (3), 249-261.
- 79. Leone, A., Fiorillo, G., Criscuoli, F., Ravasenghi, S., Santagostini, L., Fico, G. and Lello, S. (2015). Nutritional characterization and phenolic profiling of *Moringa oleifera* leaves grown in Chad, Sahrawi Refugee Camps and Haiti. *International journal of molecular sciences.* 16 (8), 18923-18937.
- Khudaer, N., Muhammed Hassn, Z., Al-Sammarrae, K. and Ibrahim, N. (2016). Purification and identification of total flavonoids extracted from *Moringa oleifera* leaves in Iraq. *Journal of biotechnology research center.* 10 (2), 73-80.
- Devaraj, V., Krishna, B. and Viswanatha, G. (2011). Simultaneous determination of quercetin, rutin and kaempferol in the leaf extracts of *Moringa oleifera Lam.* and *Raphinus sativus Linn.* by liquid chromatographytandem mass spectrometry. *Journal of Chinese Integrative Medicine.* 9 (9), 1022-1030.
- Karthivashan, G., Tangestani, F., Arulselvan, P., Abas, F. and Fakurazi, S. (2013). Identification of bioactive candidate compounds responsible for oxidative challenge from hydro-ethanolic extract of *Moringa oleifera* leaves. *Journal of Food Science*. **78** (9), 1368-1375.
- Blois, M. (1958). Antioxidant determinations by the use of a stable free radical. *Nature*. **181** (4617), 1199-1200.
- Braca, A., Fico, G., Morelli, I., De Simone, F., Tome, F. and De Tommasi, N. (2003). Antioxidant and free radical scavenging activity of flavonol glycosides from different *Aconitum* species. *Journal of Ethnopharmacology*. 86 (1), 63-67
- 85. Channarong, S., Jutiviboonsuk, A. and Korsanan, S. (2012). Total reducing antioxidant capacity of Thai herbal aromatic powder (Ya-hom) measured by FRAP assay. *Thai Pharmaceutical and Health Science Journal*. **7** (3), 111-114.

- Panda, S. and Kar, A. (2007). Antidiabetic and antioxidative effects of *Annona* squamosa leaves are possibly mediated through quercetin-3-o-glucoside. *Biofactors.* **31** (3,4). 201-210..
- Pillai, S. and Sathyadevi, M. (2015). Extraction, isolation and characterization of bioactive flavonoids from the fruits of *Physalis peruviana Linn* extract. *Asian Journal of Pharmaceutical and Clinical Research.* 8 (1), 152-157.
- 88. Dolan, J. (2003). How much is enough. *LC-GC Europe*. **16**, 740-745.
- Chen, Y., Mehok, A., Mant, C. and Hodges, R. (2004). Optimum concentration of trifluoroacetic acid for reversed-phase liquid chromatography of peptides revisited. *Journal of Chromatography A.* 1043 (1), 9-18.
- 90. Kayesh, R., Sultan, M., Rahman, A., Uddin, M., Aktar, F. and Rashid, M. (2013). Development and validation of a RP-HPLC method for the quantification of omeprazole in pharmaceutical dosage form. *Journal of Scientific Research.* 5 (2), 335-342.
- 91. Amid, A., Salim, R. and Adenan, M. (2010). The factors affecting the extraction condition for neuroprotective activity of *Centella asiatica* evaluated by metal chelating activity assay. *Journal of Applied Sciences.* 10 (10), 837-842.
- Belay, K. and Sisay, M. (2014). Phtochemical constituents and physicochemical properties of medicinal plant (*Moringa oleifera*) around Blue Hora. *Chem. Mat. Res.* 6 (7), 61-72.
- 93. Patel, P., Patel, N., Patel, D., Desai, S. and Meshram, D. (2014). Phytochemical analysis and antifungal activity of *Moringa oleifera*. *International Journal of Pharmacy and Pharmaceutical Sciences*. 6 (5), 144-147.
- 94. Fowoyo, P. and Oladoja, E. (2015). Phytochemical screening, nutritional composition and antimicrobial activity of *Moringa oleifera* seed and leaf extract against selected gastrointestinal pathogens. *Journal of Pharmacy and Biological Sciences.* 10 (6), 116-124.
- 95. Fu, R., Zhang, Y., Guo, Y., Liu, F. and Chen, F. (2014). Determination of phenolic contents and antioxidant activities of extracts of *Jatropha curcas L*.

seed shell, a by-product, a new source of natural antioxidant. *Industrial Crops and Products.* **58**, 265-270.

- Luo, A. and Fan, Y. (2011). Antioxidant activities of berberine hydrochloride. Journal of Medicinal Plants Research. 5 (16), 3702-3707.
- 97. Zeraik, M. and Yariwake, J. (2010). Quantification of isoorientin and total flavonoids in *Passiflora edulis* fruit pulp by HPLC-UV/DAD. *Microchemical Journal*. **96** (1), 86-91.
- 98. Oteef, M. (2008). Analysis of the potato sprout inhibitor 1,4dimethylnaphthalene: HPLC method development and applications. PhD Thesis. University of Glasgow, Glasgow.