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ABSTRACT

Mechanical heart assist device is an emerging treatment for end-stages of
heart failure which is an alternative to heart transplant due the shortage of heart
donors. Despite the clinical success of “Left Ventricular Assist Devices (LVAD)”,
the development still continue as new designs are progressively being tested to address
the ever existing complications. Developing these blood pumps requires determining a
balance in providing adequate pump performance while giving attention to possible
occurrence of blood damage. This study utilized a proposed design concept of
a hybrid bearing system and evaluate its’ merits of adapting the concept from a
perspective of computational fluid dynamic (CFD) approach. Two design parameters
were chosen for this study; the conical shape of the impeller bottom that functions
to provide both radial and axial stability and secondly, the inclusion of a groove
profile intended to complement the system as a hydrodynamic bearing as well as
improving washout flow. Four model variations were constructed from the design
parameters for comparison with the number of mesh between 8.9 to 9.8 million
nodes. Menter’s Shear Stress Transport (SST) turbulent model was used to simulate
3 different operating speeds (2000 rpm, 3000 rpm, 4000 rpm) at 5 varying flowrate
(3, 4, 5, 6, 7 L/min). Evaluation involved assessing the model variants based on
several performance criteria. Ranked selection method was used to rate and select
the better performing model variation with a good compromise between the level of
blood damage potential (hemolysis index) and the pump performance although heavier
emphasis on blood damage was chosen as a priority. In the analysis, CFD results
showed that the inclusion of conical shape has negligible effect on pump head with
a minor 0.8 percent difference, however it does present a potential area of stagnant
flow, reducing washout by 28.3 percent. The groove profile along with conical shaped
impeller present high shear stress region at the impeller bottom area that caused an
increase in hemolysis index by an average of 15.4 percent. Ranking and selection of the
model variants resulted in the flat groove configuration scored as the best performing
configuration that gives the good compromise of pump performance and hemolysis.
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ABSTRAK

Alat bantu jantung mekanikal adalah rawatan terkini untuk peringkat akhir
penyakit jantung yang merupakan alternatif kepada transplantasi jantung kerana
kekurangan penderma jantung. Walaupun dengan kejayaan klinikal pengunaan
“Left Ventricular Assist Devices (LVAD)”, penyelidikan masih diterusan dengan
pelbagai reka bentuk baru yang diuji sehingga hari ini untuk menangani komplikasi
rawatan tersebut. Fabrikasi pam darah memerlukan keseimbangan dalam menyediakan
tekanan pam yang mencukupi sambil memberi perhatian kepada berlakunya kerosakan
darah. Kajian ini menggunakan konsep reka bentuk sistem galas hibrid dan menilai
merit penyesuaian konsep ini dari perspektif perkomputeran dinamik bendalir. Dua
parameter reka bentuk dipilih untuk kajian ini; bentuk kon di bahagian bawah impeler
yang berfungsi menyediakan kestabilan radial dan axial. Parameter kedua ialah profil
alur yang membantu sistem pam sebagai galas hidrodinamik serta meningkatkan aliran
darah dibawah impeler. Daripada parameter reka bentuk tersebut, empat variasi model
dibandingkan dengan jumlah jaringan antara 8.9 hingga 9.8 juta nod. Model turbulen
“Shear Stress Transport Menter (SST)” dipilih bagi mensimulasikan 3 kelajuan operasi
yang berbeza (2000 rpm, 3000 rpm, 4000 rpm) pada 5 kadar aliran (3, 4, 5, 6,
7 L/min). Penilaian varian model berdasarkan beberapa kriteria prestasi. Kaedah
pemilihan mengikut pemarkahan digunakan untuk menilai prestasi parameter reka
bentuk untuk mendapatkan konfigurasi model yang mempunyai kompromi terbaik
antara tahap potensi kerosakan darah (indeks hemolisis) dan prestasi pam dengan
penekanan markah yang lebih tinggi diberi ke atas indeks hemolisis. Dalam analisis
ini, keputusan perkomputeran dinamik bendalir menunjukkan bahawa bentuk kon
impeler tidak mempunyai kesan negatif yang ketara terhadap prestasi pam yang hanya
mempunyai perbezaan 0.8 peratus. Bagaimanapun ia berisiko menyebabkan kawasan
aliran bertakung dan mengurangkan aliran di bawah impeller sebanyak 28.3 peratus.
Kombinasi bentuk kon impeler dan profil alur menyebabkan tegasan ricih yang tinggi
di kawasan bawah impeler dan peningkatan indeks hemolisis sebanyak 15.4 peratus.
Pemilihan variasi model menunjukkan konfigurasi alur rata sebagai konfigurasi yang
mempunyai prestasi terbaik yang memberikan kompromi yang baik pada prestasi pam
dan hemolisis.
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CHAPTER 1

INTRODUCTION

1.1 Background of the Problem

Congestive heart failure (CHF) is a type cardiovascular disease that causes
ventricular dysfunction and a reduction in cardiac output (Hunt and Frazier (1998);
Wood et al. (2005)). CHF is fatal and is increasing in major urban areas of developing
countries and developed countries alike where it is a leading cause of mortality
globally. The fatality rate is one in five patients died within the first year and fewer
than 60 percent survives to five years (Lloyd-Jones et al. (2010)).

There are many therapies for treating patients with heart failure (HF). For early
stages of HF includes lifestyle changes, medications, transcatheter interventions and
surgery. However, for patients with the advanced stage of HF, heart transplantation
or Ventricular Assist Device (VAD) is the only treatment options. Heart transplant
remains the best treatment to date but due to the limited number of donor hearts, only a
minor percentage of patients benefit from this treatment (Porepa and Starling (2014)).

Mechanical heart assist device is an emerging treatment for end-stages of heart
failure which is an alternative to heart transplant due the shortage of heart donors. The
Left Ventricular Assist Device (LVAD) has evolved with decades of improvements,
currently is the third generation of LVAD with the highlighted feature of utilizing
electromagnets drive system, magnetic and/or hydrodynamic levitations principles
for improved durability and reliability as blood pump. The advancements in LVAD
technology has facilitated sequential approval for clinical use either as a temporary
bridge to transplant (BTT) and as a permanent support, destination therapy (DT)
(Porepa and Starling (2014)).
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Decades of development have aimed to make the LVADs even smaller and less
cumbersome devices. However, such an improvement results in some drawbacks; as
the pump reduces size, a higher impeller speeds is required to provide the adequate
pressures, and blood damage and platelet activation will become a more apparent issue
(Fraser et al. (2011)). Therefore, determining a balance between better performance
and pump size with acceptable hemo-compatibilty.

Despite the clinical success of LVADs, the development stills continues as
new designs are progressively being tested to address the ever existing complications.
Developing these blood pumps requires certainties in providing adequate pump
performance while giving attention to possible occurrence of blood damage. Solutions
in solving these complications is a multidisciplinary task employing numerical
modeling, in-vitro models, animal trials, and clinical trials. Computational fluid
Dynamics (CFD) forms the bulk of numerical modeling since LVADs are essentially
blood pumps where fluid flow is involved as in many fields of engineering. CFD is
a versatile tool for design development of LVAD as numerous design configurations
could be characterized for virtually functional performance before fabricating the
physical device (Fraser et al. (2011)).

1.2 Statement of the Problem

The main challenge faced developing rotary blood pump is the potential
damage to blood cells. Hemolysis and platelet activation are a function of both
level of shear stress and the exposure time of blood particles traversing through the
blood pump. Blood damage is affected by the blood flow within the pump and
varying geometries of the pump is hypothesized to contribute to this effect. Therefore,
evaluation the effects of varying geometric parameters are the focus of this study.
Numerical simulation is used to assess the effects of the design factors on the potential
for blood damage and also blood pump performance.
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1.3 Objectives of the Study

The objective of this research comprise of the following:

1. To construct and evaluate the numerical models of blood pump in performance
and blood damage potential

2. To determine the best model configuration with acceptable compromise of
overall performance

1.4 Scope of the Study

The scope of this study is focused on steady state numerical simulation.
Evaluation of blood pump model variations is based on selected design factors.
Ranked selection method is used for rating and comparison of selecting the best model
configuration with the best compromise of key performance criteria.

1.5 Significance of the Study

This study expands the works of adapting a blood pump design based on
established pump design principles. Numerical simulation approach is utilized in
evaluating the pump design to function as a blood pump which puts emphasis on
indications for blood damage and thrombosis In addition to common performance
measures like generated pressure and efficiency. The benefit of this research is in
providing a comprehensive estimation of overall performance at design stage that
would eventually pave way to devising a physical working prototype of the blood pump
design.
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