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ABSTRACT 

Electronic Support is one of the key elements in electronic warfare where the 

main interest is to detect and classify emitted radar signals. Quadratic time-frequency 

distribution (TFD) is often used to represent this type of signal due to its high 

resolution representation in time and frequency. However, it is greatly affected by the 

cross-terms which cause inaccurate signal interpretation. The purpose of this study is 

to design a cross-term suppression technique for a non-cooperative environment where 

the exact signal characteristics are unknown. A new adaptive directional ambiguity 

function Wigner-Ville distribution (ADAF-WVD) is developed to adaptively estimate 

the kernel parameters based on the ambiguity properties of a signal. Two adaptive 

procedures, which are the Doppler-lag block searching and the ambiguity domain 

energy concentration estimation are developed to separate the auto-term from the 

cross-term in the ambiguity domain. ADAF-WVD measures the energy level of the 

signal in the ambiguity domain to distinguish between the auto-terms and cross-terms. 

Four radar signal types are used to verify the accuracy of the time-frequency 

representation (TFR): simple pulse, Costas coded, pulsed linear frequency modulation 

and continuous wave linear frequency modulation. Accurate TFRs are produced for 

most of the signal as low as at signal-to-noise ratio (SNR) of -1 dB. The performance 

of instantaneous frequency estimation is verified using Monte Carlo simulation. Both 

approaches are proven to be efficient estimators as they meet the requirements of the 

Cramer-Rao Lower Bound at SNR > 6 dB. The computational complexity of ADAF-

WVD is four times lower than the adaptive smooth window cross Wigner-Ville 

distribution. Thus, it has been demonstrated that the developed TFD is an efficient 

solution for the analysis of radar signals. 
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ABSTRAK 

Sokongan Elektronik merupakan elemen penting dalam peperangan elektronik 

yang mana fungsi utamanya adalah untuk mengesan dan mengelas pancaran isyarat-

isyarat radar. Taburan masa-frekuensi (TFD) kuadratik sering digunakan untuk 

mewakilkan isyarat-isyarat jenis ini disebabkan resolusi perwakilan yang tinggi bagi 

masa dan frekuensi. Namun ianya sangat terkesan dengan istilah-silang yang 

menyebabkan ketidaktepatan dalam penafsiran isyarat. Tujuan kajian ini adalah untuk 

mereka bentuk teknik penindasan istilah-silang bagi persekitaran bukan-kerjasama di 

mana cirian sebenar isyarat tidak diketahui. Adaptive directional ambiguity function 

Wigner-Ville distribution (ADAF-WVD) yang baharu dibangun bagi menganggar 

parameter-parameter kernel secara ubah suaian berdasarkan sifat-sifat ketaksaan 

isyarat. Dua tatacara boleh suai, iaitu carian blok Doppler-lag dan anggaran 

penumpuan tenaga domain ketaksaan dibangun bagi mengasingkan istilah-auto 

dengan istilah-silang di dalam domain taksa. ADAF-WVD mengukur paras tenaga 

isyarat dalam domain taksa bagi membezakan istilah-auto dan istilah-silang. Empat 

jenis isyarat radar digunakan bagi pengesahan ketepatan perwakilan masa-frekuensi 

(TFR): denyut ringkas, berkod Costas, modulatan dedenyut frekuensi linear, dan 

modulatan gelombang terus frekuensi linear. TFR yang tepat dapat dihasilkan bagi 

hampir kesemua isyarat pada nisbah isyarat-hingar (SNR) serendah -1 dB. Prestasi 

penganggaran frekuensi seketika dinilai menggunakan simulasi Monte Carlo. Kedua-

dua pendekatan terbukti sebagai penganggar yang cekap memandangkan mereka 

mencapai had bawah Cramer-Rao pada SNR > 6 dB. Kekompleksan perkomputeran 

bagi ADAF-WVD adalah empat kali ganda lebih rendah berbanding adaptive smooth 

window cross Wigner-Ville distribution. Oleh itu, telah terbukti bahawa TFD yang 

dibangunkan merupakan penyelesaian yang cekap bagi menganalisa isyarat-isyarat 

radar.  
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CHAPTER 1 

1INTRODUCTION 

1.1 Background 

Radio detection and ranging or RADAR is an important sensor for target 

detection and tracking. Radar in military perspective is usually used in tracking enemy 

missiles, ships, aircraft, and satellites. Effective radar system should be able to provide 

information about the position of enemy targets which later be used in threat 

recognition and evaluation. Radar is also used extensively in civilian field applications 

such as air traffic control, ocean surveillance, terrestrial traffic control and weather 

sensing [1].   

Electronic Warfare (EW) constitutes the manipulation electromagnetic (EM) 

environment with the intention of providing an advantage over the adversary in the 

utilization of EM spectrum. Electronic support (ES) which is one of the three major 

divisions in EW is responsible for collecting and analyzing all the radiated EM to fulfill 

the spectrum operations for a given command [2]. ES also covers the application of 

spectrum monitoring to ensure that the EM environment can be used by civilian 

without impeding the military access. 
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Due to high peak power, conventional radar signals can be easily detected and 

located by modern intercept receiver. Low probability intercept (LPI) radar is 

introduced that utilized special emitted waveform to avoid detection and interception 

[3]. Thus, intercepting LPI signals is not easy but not totally impossible. Modern 

intercept receivers with channelized receiver, utilization of superheterodyne receiver 

and sidelobe detection capability are among important properties that are required for 

intercepting LPI signals [4], [5]. 

Signal processing algorithms are the important components of modern 

intercept receiver that improves the detection and analysis of LPI radar. Examples of 

methods used for detecting and analyzing LPI radar are adaptive match filtering, 

parallel filter arrays with higher order statistics, Wigner-Ville distribution (WVD), 

quadrature mirror filter bank (QMFB), and cyclostationary processing (CP) [5].    

1.2 Problem Statement 

In radar, the presence of the noise leads to false detection, false alarm, and 

inaccurate signal parameters estimation. Some of the factors are noise background 

which usually assumed as white Gaussian noise, microwave line noise, receiver noise, 

and receives antenna ohmic loss noise. Errors in receiving signal can be classified as 

external or internal errors. Internal errors come from the radar system itself such as 

system noise temperature but are not covered in this work. The external error means 

the errors originated not from the system but from the outside sources such as 

deliberate electronic interference (jammers), backscatter and multipath [6]. In 

addition, meteorological phenomena such as rain, snow, and cloud can cause the 

attenuation of the signal especially for the signal that transmits above X-band [7]. 
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A non-stationary signal such as LPI radar signal whose spectral description 

depend on time is best analysed with time-frequency distribution (TFD). Among TFD 

classes, quadratic TFD (QTFD) is widely used because it provides high resolution 

representation both in time and frequency [8]. Cross-terms are introduced in QTFD 

due to the quadratic nature of the algorithm which cause problem to interpret the true 

signal characteristics and it also exaggerates the effect of noise [9]. Kernel function is 

introduced in QTFD as a solution to suppress cross-terms and obtaining an accurate 

TFR.  

Most of the time, ES applications dealing with a non-cooperative environment 

situation where the prior knowledge of the true signal characteristics – pulse repetition 

period (PRP), frequency agilities, modulation techniques, pulse width (PW), and pulse 

amplitude - are unknown. Signal dependent TFD requires a TFD that is able to 

preserve the maximum concentration of the signal component to its proper support in 

the TF domain for a broad class of signal types – radar and communication [10]. The 

main challenge is the cross-terms characteristics differs from one signal to another. 

Signal dependent kernel solves this problem but the kernel parameters has to be 

estimated first. Kernel parameters estimated manually provided the signal 

characteristics are known. However, the kernel parameters have to be estimated 

adaptively in a non-cooperative environment. Some of the adaptive kernel TFDs such 

adaptive optimal kernel smooth-windowed Wigner-Ville distribution (AOK-SWVD) 

[11] and adaptive smoothed windowed cross Wigner-Ville distribution (ASW-WVD) 

[12]  are limited to communication signals such as amplitude shift keying (ASK) and 

frequency shift keying (FSK) signal. While, the adaptive optimal kernel TFD (AOK-

TFD) [13] is only suitable for linear frequency modulation (LFM) signal. The time-

frequency reassignment and synchrosqueezing [14] although applicable for many 

types of signals requires a significantly high computational complexity. Therefore, 

there is a need for an adaptive QTFD that is suitable for broader class of signals in a 

non-cooperative environment. 
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The time-frequency (TF) methods can be class into linear, bilinear (quadratic) 

and high-order species. Linear TF methods such as spectrogram have no cross-terms 

issue and comparatively low in computational complexity but suffer from low-

resolution signal representation. The high order TF distribution can achieve higher 

concentration and special features. However, high order TF has relatively complicated 

computation [15]. Typically for QTFD, it will require more than N2 log2 N operations 

and N2 sample points of memory where N is the length of the signal [16]. Such 

intensive computational complexity and large memory requirement make the 

implementation for near real-time application are not possible. 

1.3 Objectives 

The objectives of this research are: 

1. To model the characteristics of various types of radar signals in ambiguity 

domain. 

2. To design adaptive procedure (adaptive ambiguity energy concentration 

estimation and Doppler-lag block searching) to estimate the kernel parameters 

(Doppler and lag window) for accurate TFD in a non-cooperative environment. 

3. To implement computationally efficient separable kernel QTFD suitable to 

represent radar signals. 

1.4 Project Scope 

The scopes of this research are: 
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1. The quadratic time-frequency distribution (QTFD) based on the Wigner-Ville 

distribution (WVD) is used in this research. 

2. Existing SDR equipment and antenna at the DSP Lab UTM is used to receive 

signals to verify the time-frequency distribution. 

3. A sampling of the signal is set at the Nyquist rate. The sampling frequency is 

40MHz and maximum frequency is 20MHz. 

4. Signals used in this research are a simple pulse signal, Costas coded signal, linear 

FM signal (LFM), and continuous wave linear FM signal (CW-LFM). According 

to [3] all the modulation techniques mention above can be used to generate secure 

LPI waveforms.   

5. During the development, testing and benchmarking of the algorithm, MATLAB 

software will be used as the simulation tools. 

6. The estimated IF variance from the peak of time-frequency representation (TFR) 

is benchmarked with the CRLB for IF estimate.  

7. The developed technique is tested with captured signal at Senai International 

Airport and UTM Observatory for actual signal application performance. 

8. The multipath fading environment is not considered in this study. 

1.5 Contribution of Work 

 This research proposed an adaptive kernel QTFD for the estimation of signal 

parameters. These new techniques are able to cover a broader class of radar signals 

compared to the previous work [17]–[20] that only capable of catering for a limited 

class of signals. Adaptive optimal kernel TFD (AOK-TFD) as an example is very good 

in representing linear FM signal, especially in low SNR. However, this approach failed 

to resolve the signal characteristics from the cross-terms when it comes to nonlinear 

FM signal such as Costas coded signal. Although , the reassignment is method suitable 

for many TFD, it introduces a lot of additional computational cost [18]. 
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 The new adaptive directional ambiguity function Wigner-Ville distribution 

(ADAF-WVD) developed with optimized computational complexity and improved 

accuracy IF estimation. Computational load for the developed kernel is reduced by 

taking into account the symmetric property of the signal in the ambiguity plane. This 

work successfully improves the existing kernel specific QTFD algorithm in terms of 

computational load and memory utilization. Realizations of miniature QTFD 

processor for mobility and performance advantages in future are possible by the 

implementation of separable kernel TFD that greatly reduce the computational 

complexity and utilization of memory.  

ADAF-WVD designed specifically to work in a non-cooperative environment 

where the prior knowledge of incoming signal is not required in the analysis. The 

adaptive kernel incorporated in the proposed methods enable the kernel to adjust its 

size depending on the signal of interest for the sole purpose of providing the optimal 

TFD against a wide range of LPI signal classes. 

1.6 Thesis Organization 

The thesis is divided into five chapters starting with Chapter 1 as introduction. 

Chapter 2 is the literature review that discusses the basic regarding radar technology, 

concept of LPI radar, and works that are related to the research. Chapter 3 is focusing 

on the methodology of implementing fast and efficient separable kernel QTFD. In 

Chapter 4, the analysis methods are verified using variety of LPI radar signals. The 

performance of the proposed methods against the actual radar signal also presented 

here. Conclusion and recommendations for future work are presented in Chapter 6. 
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