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Poor management of the generated waste from the by-products from 

agricultural land and commercial food industries have contributed to increased 

ecological burden. The potential of waste biomass in current agriculture practice is not 

fully utilize the biomass, and left to decompose in field or are burned. Therefore, 

development of technologies that fully utilize these wastes is, therefore, necessary. In 

this study, Zea mays L. husk leaves (ZHL) were chemically activate using phosphoric 

acid (H3PO4) under activation temperature of 500°C to obtain ZHL activated carbon 

(ZHLAC). In order to enhance the immobilization of enzyme by covalent bonding, 

surface functionalized ZHLAC were prepared using ethylendiamine and 

glutaraldehyde to increase the functional group on support surface. The biocatalyst 

study of CRL-FZHLAC using FTIR, TGA and Nitrogen Adsorption revealed CRL 

were successfully bound to the surface of the FZHLAC support via imine bond formed 

through a Schiff base mechanism. Thermogravimetric analysis revealed that CRL-

FZHLAC was successful prepared with an enzyme loading of 12 % (v/v). The 

effectiveness of CRL-FZHLAC in enzymatic reaction by hydrolysis of olive oil was 

performed and optimized under various conditions of temperature, pH of solvent 

buffer, stirring rate and reusability. Subsequently, enzymatic synthesis of butyl 

butyrate was also optimized under various conditions of temperature, molar ratio 

acid/alcohol and stirring rate. Maximum activity of CRL-FZHLAC for hydrolysis 

(71.24 µmol/min/g) was achieved under an optimized condition of 3 h, 50°C, 200 rpm 

at pH 8. Under optimum condition [3 h, 40°C, molar ratio of acid/alcohol of 1:2 and 

200 rpm], the lipase successfully synthesize 87% of butyl butyrate as compare to 

62.9% by the free CRL [3 h, 40oC, molar ratio of acid/alcohol of 1:2 and 200 rpm]. 

CRL-FZHLAC was reusable for up to 5 cycles the hydrolysis of olive oil and 7 cycles 

the synthesis of butyl butyrate. In short, it was concluded that AC obtained from waste 

ZHL was suitable as a raw material to prepare a highly functional FZHLAC. Activity 

of CRL-FZHLAC was improved to produce high yield of both synthesis of olive oil 

and butyl butyrate. Thus, the development CRL-FZHLAC was a possible practice in 

increasing the efficiency of hydrolysis and esterification reaction. 
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Pengurusan sisa buangan yang teruk daripada produk sampingan dari hasil 

pertanian dan industri makanan komersial telah menyumbang kepada peningkatan 

beban ekologi. Potensi sisa biojisim dalam amalan pertanian semasa tidak 

memanfaatkan biojisim sepenuhnya, dan dibiarkan mengurai di ladang atau dibakar. 

Oleh itu, perkembangan teknologi yang memanfaatkan sepenuhnya bahan buangan ini, 

adalah perlu. Di dalam kajian ini, daun sekam Zea mays L. (ZHL) diaktif secara kimia 

menggunakan asid fosforik (H3PO4) di bawah suhu pengaktifan 500°C untuk 

mendapatkan karbon aktif ZHL (ZHLAC). Untuk meningkatkan imobilisasi enzim 

oleh ikatan kovalen, permukaan terfungsi ZHLAC telah disediakan menggunakan 

etilendiamina dan glutaraldehida untuk meningkatkan kumpulan berfungsi pada 

permukaan sokongan. Kajian terhadap biokatalis CRL-FZHLAC menggunakan FTIR, 

TGA dan serapan Nitrogen mendedahkan CRL telah berjaya diikat pada permukaan 

sokongan FZHLAC melalui ikatan imina yang terbentuk melalui satu mekanisma yang 

berasaskan Schiff. Analisis gravimetrik terma mendedahkan bahawa CRL-FZHLAC 

telah berjaya disediakan dengan pemuatan enzim sebanyak 12% (v/v). Keberkesanan 

CRL-FZHLAC dalam tindak balas enzimatik oleh hidrolisis minyak zaitun telah 

dilakukan dan dioptimumkan di bawah pelbagai keadaan seperti suhu, pH penampan 

pelarut, kadar pengadukan dan keboleh diguna semula. Seterusnya, sintesis enzimatik 

butil butirat juga dioptimumkan di bawah pelbagai keadaan seperti suhu, asid 

molar/alkohol dan kadar pengacauan. Aktiviti maksimum CRL-FZHLAC untuk 

hidrolisis (71.24 μmol/min/g) telah dicapai di bawah keadaan optimum 3 jam 50°C, 

200 rpm pada pH 8. Di bawah keadaan optimum [3 jam, 40°C, nisbah molar asid 

/alkohol 1:2 dan 200 rpm], enzim  berhasil mensintesis 87% butil butirat berbanding 

dengan 62.9% oleh CRL bebas [3 jam, 40°C, nisbah molar asid /alkohol 1:2 dan 200 

rpm]. CRL-FZHLAC boleh digunakan semula sehingga 5 kitaran hidrolisis minyak 

zaitun dan 7 kitaran sintesis butil butirat. Secara ringkasnya, disimpulkan bahawa AC 

yang diperoleh dari bahan buangan ZHL sesuai sebagai bahan mentah untuk 

menyediakan FZHLAC yang sangat terfungsi. Aktiviti CRL-FZHLAC telah 

dipertingkatkan untuk mendapatkan hasil yang tinggi bagi kedua-dua sintesis minyak 

zaitun dan butil butirat. Oleh itu, CRL-FZHLAC yang dibangunkan adalah satu 

amalan yang berkemungkinan untuk meningkatkan kecekapan tindak balas hidrolisis 

dan pengesteran. 
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INTRODUCTION 

1.1 Background of the Study 

  The expansion of agricultural land to grow food in meeting the demands of 

global population has resulted in new environmental challenges. Such drastic change 

has been mainly attributed to the production of large amounts of agricultural biomass 

(Owolabi et al., 2017). Biodegradable waste of biomass origin forms the most 

abundant untapped natural resources on earth. However, when by-products of such 

waste, albeit from industrial or agricultural activities, are not managed properly, the 

liberated substances eventually become an ecological burden (Demir et al., 2015). The 

ecological stress is further heightened when some farmers in certain regions clear up 

large agricultural lands using the ‘slash and burn’ technique. Although the technique 

is relatively simple to execute, it can lead to widespread reduction in air quality along 

with elevated health issues (Islam et al., 2016). In this situation, efforts into developing 

technologies that fully utilize these unwanted biomass, transforming the wastes into 

commercially-functional products warrants attention from the scientific community. 

Studies have shown that aside to improving the way of life, the utilization of unwanted 

biomass can promote sustainability and alleviate existing pollutions by reducing the 

rate of waste disposal (Jalil et al., 2012; Demir et al., 2015; Owolabi et al., 2017).   



2 

 

Figure 1.1: Zea mays L. husk leaf (Living on earth 2013) 

In this perspective, this study was focused on using the lignocellulosic 

materials from agricultural biomass of Zea mays L. (maize) leaf husks (ZHL). Such 

biomass is available throughout the year, generated in large plantations and as wastes 

from commercial food industries (Jalil et al., 2012). In Malaysia, cash crops (maize, 

groundnuts, sugar cane, cassava, yam, sweet potato and yambean) dominate 

approximately 22.98% of agriculture production, in which 25% are originates from 

maize (Zea mays L.). Besides, statistics by Department of Agriculture of Malaysia 

have shown that maize production have increased for up to 3.8% from 2011 to 2015 

(Department of Agriculture Putrajaya, Malaysia 2015). However, while ZHL biomass 

is produced in large quantities, it is typically discarded or left to decompose in fields. 

Therefore, the full technological potential of this biomass is not fully explored and 

utilized to its maximum. A matter of fact, the carbon rich ZHL is potentially an 

excellent source of untapped advanced carbon materials (Gao et al., 2016). Previous 

studies have shown that plant wastes, such as that from coconut shell, rice husks and 

the leaves or husks of bamboo are carbon-rich materials that can be fashioned into an 

array of advanced carbon-based composites suitable for technological applications. 

Activated carbon derived from Zea mays L. is described to possess inherent 

physicochemical advantages viz. a high surface area and porous structure, as well as a 
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high degree of surface reactivity (Chenenmatchaya et al., 2014; Gao et al., 

2016).These properties allow the activated carbon to be manipulated by altering their 

activation parameter (eg: type of activation, activating agent, activation/ pyrolysis 

temperature and sequence, and the ratio of impregnation) to produce a plethora of 

porous structures (Hadi et al., 2015).  

Enzyme supports fabricated from biomaterials has attractive and potential 

applications largely due to their biodegradability, renewability, low cost and low 

carbon dioxide release (Elias et al., 2017). Herein, this study propose the preparation 

of a support consisting of chemically-functionalized activated carbon derived from Zea 

mays L. leaf husks (FZHLAC). The process of chemical-assist surface 

functionalization on ZHLAC was crucial to improve its biocompatibility as the support 

to immobilize Candida rugosa lipase (CRL). Chemical activation is the preferred 

technique in this study to activate ZHLAC as it has been proven promising and gave 

rise to new types of supports exhibiting exceptionally high specific surface area (Ros 

et al., 2006; Hadi et al., 2015). Surface activation of ZHLAC have been widely 

describe to enhance the capacity of the support to accept higher loadings of protein 

materials (Ehrhardt et al., 1989; Ros et al., 2006). Moreover, the highly porous nature 

of activated carbon increases activity and the stability of enzymes to function under 

extreme conditions of pH, temperature and pressure (Furegon et al., 1997; Marzuki et 

al., 2015). In our case, it can favorably lead to a more stable and rigid structure of the 

immobilized CRL, and potentially increase the operational stability of the lipase for 

extended usages (Marzuki et al., 2015b). Other benefits also include facile 

recoverability and reusability of the biocatalyst (Mohamad et al., 2015a; Marzuki et 

al., 2015; Manan et al., 2016; Isah et al., 2017) and potential cost savings when used 

in large-scale manufacturing processes (Rani et al., 2000). 

Enzyme supports fabricated from biomaterials has attractive and potential 

applications largely due to their biodegradability, renewability, low cost and low 

carbon dioxide release (Elias et al., 2017). Herein, this study propose the preparation 

of a support consisting of chemically-functionalized activated carbon derived from Zea 

mays L. leaf husks (FZHLAC). The process of chemical-assist surface 
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functionalization on ZHLAC was crucial to improve its biocompatibility as the support 

to immobilize Candida rugosa lipase (CRL). Chemical activation is the preferred 

technique in this study to activate ZHLAC as it has been proven promising and gave 

rise to new types of supports exhibiting exceptionally high specific surface area (Ros 

et al., 2006; Hadi et al., 2015). Surface activation of ZHLAC have been widely 

describe to enhance the capacity of the support to accept higher loadings of protein 

materials (Ehrhardt et al., 1989; Ros et al., 2006). Moreover, the highly porous nature 

of activated carbon increases activity and the stability of enzymes to function under 

extreme conditions of pH, temperature and pressure (Furegon et al., 1997; Marzuki et 

al., 2015). In our case, it can favorably lead to a more stable and rigid structure of the 

immobilized CRL, and potentially increase the operational stability of the lipase for 

extended usages (Marzuki et al., 2015b). Other benefits also include facile 

recoverability and reusability of the biocatalyst (Mohamad et al., 2015a; Marzuki et 

al., 2015; Manan et al., 2016; Isah et al., 2017) and potential cost savings when used 

in large-scale manufacturing processes (Rani et al., 2000). 

1.2 Problem Statement 

Considering that ZHL is constantly produced as an agricultural waste and the 

biotechnological potential of this biomass is not fully explored, its utilization for 

producing a value-added product i.e. support for CRL immobilization appears feasible 

and commercially attractive. Moreover, the cost for large-scale production of 

commercial activated carbons is very expensive (Safa et al., 2007; Cronje et al., 2011). 

Activated carbons developed from low cost raw biomaterials (Dias et al., 2007) i.e. 

ZHL may prove attractive as a cheaper alternative. Moreover, the existing chemical 

activation technique used to produce activated carbon is far from being eco-friendly 

as well as require a complicated and a costly synthetic route (Kumar et al., 2016; 

Yorgun & Yildiz., 2015). In this regard, the protocol to prepare activated carbon using 

ZHL biomass in this study is potentially more sustainable to overcome the 

abovementioned drawbacks.  
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Assessment on the feasibility of CRL-FZHLAC as biocatalyst was focused on 

synthesizing butyl butyrate as current attempts to produce high yield of the ester has 

been problematic. Furthermore, activated carbon prepared from ZHL as support for 

CRL immobilization and subsequently used for such reaction, remains unreported. 

ZHL was chemically activated and converted to activated carbon before undergoing 

surface functionalization to introduce active sites to covalently attach the CRL via 

ethylenediamine and glutaraldehyde. The use of crosslinkers, ethylenediamine and 

glutaraldehyde on FZHLAC support can increase the number of functional groups on 

the surface as well as favorably altering its stability and mechanical properties (Ramani 

et al., 2012). The method developed here is more eco-friendly and would complement 

existing technologies for preparing commercial activated carbons. It is hypothesized 

that the covalent attachment of CRL onto FZHLAC may improve biocompatibility of 

FZHLAC to receive CRL and increase structural integrity of the CRL, potentially 

improving rate of hydrolysis of olive and yield of butyl butyrate. 

1.3 Objectives 

 The objectives of this study are: 

i. To immobilize CRL onto FZHLAC supports. 

ii. To characterize the morphological properties of CRL-FZHLAC. 

iii. To optimize CRL-FZHLAC for the hydrolysis of olive oil and esterification 

synthesis of butyl butyrate and assess the stability of CRL-FZHLAC. 
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1.4 Scope of Study 

 The scope of this project involved preparation of activated carbon from ZHL 

husk leaf using phosphoric acid as the activating agent to afford ZHLAC. This is 

followed by the covalent immobilization of CRL onto the surface of FZHLAC using 

glutaraldehyde as the crosslinker. 

 

 

The study subsequently assessed the morphological characteristics of the 

ZHLAC, FZHLAC and CRL-FZHLAC by Fourier Transform Infrared spectroscopy 

(FTIR), thermogravimetric analysis (TGA), Nitrogen adsorption, and X-ray diffraction 

(XRD). In order to check the surface area and crystallinity of the sample of sample, 

nitrogen adsorption and XRD was used.  

The following part of the study is the optimization of the CRL-FZHLAC for 

the hydrolytic reaction of olive oil emulsion and the esterification synthesis of butyl 

butyrate using the OVAT method. The parameters evaluated were temperature, stirring 

rate, pH and molar ratio of the substrates. The reusability and thermal stability of the 

CRL-FZHLAC were also established. 

1.5 Significances of Study 

 The protocol for the development of FZHLC support from ZHL for 

immobilization of CRL may prove useful for future utilization of the support for 

immobilization of other types of enzymes, and not just lipases like CRL. 

Immobilization of CRL onto functionalized FZHLAC can improve the physico-

chemical and catalytic properties of the enzyme. Most importantly, the study offers 

information on how the highly porous and rich surface groups (Zhang et al., 2012; 

Kennedy et al., 2007) of FZLAC can improve stability and activity of CRL for two 
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important industrial reactions catalyzed by lipases (Kahveci et al., 2012; Salihu et al., 

2013). 
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