DESIGN AND SIMULATION OF A DENTAL IMPLANT FOR THE INDONESIAN POPULATION

MOHD IQMAL BIN MAMAT

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Science (Mechanical Engineering)

> Faculty of Mechanical Engineering Universiti Teknologi Malaysia

> > JULY 2017

For you,

Mother and Father.

ACKNOWLEDGEMENT

First and foremost, I would like to thank my Master Project main supervisor, Dr. Ardiyansyah Shahrom for his constant guidance, encouragement, and support throughout the entire duration of the project. His patience towards me is what enables me to survive, and most importantly complete this project within two semesters. I would also like to extend my sincere gratitude to Dato' Prof. Dr. Ir. Hj. Mohamed Rafiq bin Dato' Abdul Kadir for being the person who introduced me to the world of biomechanics. Both of you are the giants whose shoulders I stand on.

To the people of the Sports Innovation and Technology Center (SITC), Faculty of Biosciences and Medical Engineering (FBME) UTM, thank you for all your support these past one and a half years. Not forgetting the people of the Medical Implant and Technology Group (MEDITEG), FBME UTM, you guys have helped me through some of the most difficult times in my life. For that, you will always have my gratitude.

A special thank you to both my parents, who have been supporting me throughout my Master's degree journey every step of the way. This is all for you. Last but not least, thank you to all parties who have helped me in progression of this project from the beginning to the very end, either directly or indirectly. To the Almighty Allah SWT, thank You for granting me the strength and willpower necessary to see this project through to its completion.

ABSTRACT

The growing senior citizen population of Indonesia has led to an increase in cases of edentulism amongst the population there. Current dental implants are unsuitable due to morphological differences in the oral anatomy between people of European ancestry and Indonesian ancestry. This fuels the need for a dental implant to be designed specifically for the Indonesian population in mind. The objectives of this study are to design a new dental implant specifically suitable for the average Indonesian woman and to study its mechanical behavior under normal physiological loading conditions through the use of nonlinear finite element analysis (FEA) software MSC Marc[™]. The size of the dental implant is determined through statistical analysis of anthropometric data from five Indonesian women with ages from 46 to 59 years old. Four conceptual designs are generated, and only one is selected as the final design. A three – dimensional (3 - D) model of the dental implant is created by using the computer – aided design software (SolidWorks[™]). A 3 – D model of the posterior mandible is created by using CT – scan images. These two 3 – D models are combined inside an FEA software and their combined mechanical behavior is simulated. The results show that the equivalent von Mises stress on the implant is within acceptable limits. Furthermore, other results such as the maximum principal stress on the bone, maximum compressive stress on the bone, and maximum shear stress on the bone, indicates that a dental implant has been designed for the average Indonesian population which can perform reasonably well under normal physiological loading conditions with minimal risk of failure. Further studies are needed to verify this, but for now, the results show potential.

ABSTRAK

Populasi warga emas yang sedang meningkat di Indonesia telah menyebabkan peningkatan dalam kes – kes *edentulism*. Implan pergigian yang terdapat di pasaran ketika ini dikatakan kurang sesuai untuk mereka kerana wujudnya perbezaan morfologi di dalam anatomi oral di antara orang yang berketurunan Eropah dan Indonesia. Hal ini mencetuskan lagi keperluan untuk mereka bentuk satu implan pergigian yang direka khusus untuk warga emas Indonesia. Objektif – objektif kajian ini adalah untuk mereka bentuk implan pergigian yang baharu yang sesuai untuk digunakan oleh perempuan Indonesia yang biasa serta untuk mengkaji tingkah laku mekanikal implan tersebut di dalam keadaan bebanan fisiologi yang normal melalui perisian analisa unsur terhingga (FEA) tak linear MSC Marc[™]. Saiz implan pergigian itu ditentukan melalui analisa statistical ke atas data antropometri daripada lima orang wanita Indonesia yang berumur di antara 46 hingga 59 tahun. Empat reka bentuk konseptual yang dijana, dan hanya satu yang dipilih sebagai reka bentuk akhir. Satu model tiga dimensi (3 - D) implan pergigian itu telah dicipta dengan menggunakan perisian reka bentuk bantuan computer (CAD) SolidWorksTM. Satu model 3 - D rahang bawah posterior telah dicipta berdasarkan imej – imej CT – scan. Kedua – dua model 3 – D tadi dicantum di dalam sebuah perisian FEA dan tingkah laku mekanikal mereka disimulasikan. Keputusan kajian ini menunjukkan bahawa tegasan von Mises setara yang dikenakan terhadap implan itu masih lagi berada pada julat yang boleh diterima. Keputusan – keputusan lain seperti tegasan principal maksimum pada tulang, tegasan mampatan pada tulang, dan tegasan ricih pada tulang menunjukkan bahawa sebuah implan pergigian yang boleh bertindak dengan baik di dalam keadaan bebanan fisiologi biasa dengan peluang kegagalan yang minima yang boleh digunakan oleh penduduk purata Indonesia telah berjaya dicipta. Kajian selanjutnya diperlukan untuk membuktikan kesahihan pernyataan ini, tetapi keputusan kajian ini amat memberangsangkan.

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE
	DECI	LARATION	ii
	DEDI	ICATION	iii
	ACK	NOWLEDGEMENT	iv
	ABSTRACT ABSTRAK		
	TABI	LE OF CONTENTS	vii
	LIST OF TABLES		xi
	LIST OF FIGURES		
	LIST OF ABBREVIATIONS LIST OF SYMBOLS		XV
			xvi
	LIST	OF APPENDICES	xvii
1	INTF	RODUCTION	
	1.1	Overview of the Study	1
	1.2	Present Context: The Economics of Dental Implants	1
	1.3	Problem Statement: Suitability of Dental Implants for	3
		the Average Indonesian Population	
	1.4	Objectives of Study	4

1.5	Scope of Study	4
1.6	Significance of Study	5
1.7	Limitations of Study	5

LITERATURE REVIEW

2

2.1	Introduction			6
2.2	Anthro	pometry: A	General Overview	6
2.3	Anaton	ny of the Ora	al Cavity	9
	2.3.1	The Mand	ible	11
	2.3.2	The Teeth		12
2.4	Racial	Differences	in Mandibular Anthropometry	15
2.5	Rationa	ale for Denta	l Implants	16
	2.5.1	The Effect	s of an Aging Population	17
	2.5.2	Biological	Advantages of Dental Implants	18
2.6	Moderr	n Dental Imp	lantology: An Overview	22
2.7	Types of	of Dental Im	plants	25
	2.7.1	Subperiost	eal implants	25
	2.7.2	Intramucos	sal implants	26
	2.7.3	Transostea	l implants	27
	2.7.4	Endosteal	implants	28
2.8	The Fir	nite Element	Method: Common Concepts and	29
	Termin	nologies		
2.9	Clinica	l Biomechar	nics of Dental Implants	33
2.10	Factors	Influencing	Dental Implant Design: Comparison of	34
	Variou	s Literature		
	2.10.1	Implant lei	ngth	35
	2.10.2	Implant dia	ameter	36
	2.10.3	Implant ge	ometry	36
	2.10.4	Implant th	read configuration	38
		2.10.4.1	Thread pitch	39
		2.10.4.2	Thread helix angle	39
		2.10.4.3	Thread width and depth	40
2.11	Summa	ury		41

RESEARCH METHODOLOGY

3.1	Introd	uction		42
3.2	Phase	One: Mor	phological Study of Oral Cavity Images	43
	3.2.1	Statemer	nt of Ethics	44
3.3	Phase	Two: Des	ign of Dental Implants	45
	3.3.1	Product	Discovery	45
	3.3.2	Product	Definition	47
	3.3.3	Quality Implant	Function Deployment (QFD) for Dental Design	48
	3.3.4	-	ual Design of Dental Implants	53
		3.3.4.1	Concept 1 – Angular abutment dental implant	53
		3.3.4.2	Concept 2 – Porous metal implant body	54
		3.3.4.3	Concept 3 – Serrated thread dental	55
			implant	
		3.3.4.4	Concept 4 – Variable thread dental	55
			implant	
3.4	Phase	Three: Th	ree – Dimensional (3 – D) Modeling of the	58
	Mand	lible		
3.5	Phase	Four: Noi	nlinear Finite Element Analysis	60
	3.5.1	Pre – Sir	nulation	60
	3.5.2	Simulati	on	64
		3.5.2.1	Geometric Properties	66
		3.5.2.2	Material Properties	66
		3.5.2.3	Contact Properties	67
		3.5.2.4	Boundary Conditions	67
		3.5.2.5	Loadcases	68
	3.5.3	Post – Si	imulation	69
3.6	Summary		69	

3

RESULTS AND DISCUSSION

4

5

4.1	Introdu	iction	70	
4.2	Statisti	cal Analysis of Anthropometric Data	70	
4.3	Final D	Final Design of Dental Implant 71		
4.4	Mesh (Configuration of the Implant – Mandible Model	75	
4.5	Mecha	nical Behaviour of the Designed Dental Implant	76	
	4.5.1	Equivalent von Mises Stress	76	
	4.5.2	Maximum Principal Stress	80	
	4.5.3	Maximum Compressive Stress	81	
	4.5.4	Maximum Shear Stress	83	
4.6	Corrob	ooration with External Literature	84	
4.7	Summa	ary	85	
CON	CLUSIC	ON AND RECOMMENDATIONS		
~ ~ ~ ~				

5.1	Overall Summary and Conclusion of Research	87
5.2	Recommendations for Future Work	88

REFERENCES	89
APPENDICES	97

LIST OF TABLES

TABLE	NO. TITLE	PAGE
2.1	Variations in craniofacial traits for average members of three	8
	different ancestries	
3.1	Step 3 of QFD for dental implant	49
3.2	Step 5 of QFD for dental implants	51
3.3	Step 6 of QFD for dental implants	52
3.4	Step 7 of the QFD for dental implants	53
3.5	Design score for each of the four conceptual designs. Each concept	57
	has two scores, the assigned score S_t and the normalized score	
3.6	Mechanical properties of the materials used in the simulation	66
3.7	Interfacial properties of the contact bodies in this simulation	67
4.1	Table showing the distance between the alveolar crest and the	70
	mandibular canal, d (mm) and the thickness of the alveolar bone, t	
	(mm)	
4.2	Comparison of the maximum values of various stress fields as	85
	obtained in this study with that obtained by other research	

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
1.1	Child mortality rates in United Kingdom (in purple) and Indonesia (in blue) in the 20 th century and the early 21 st - century, expressed as the number of children per 1000 live births who die before reaching the age of 5	2
2.1 (A)	Position of the oral cavity in relation to other facial cavities	11
2.1 (B)	Oral vestibule and oral cavity proper	11
2.2 (A)	Superior view of the mandible	12
2.2 (B)	Lateral view of the mandible	12
2.2 (C)	Medial view of the mandible	12
2.3 (A)	Adult upper and lower permanent teeth	14
2.3 (B)	Deciduous ("baby") teeth	14
2.4	Cross – sectional view of a human tooth	15
2.5	Graph of the average lifespan of a human being from the year 1500 BC to 2000 AD	18
2.6	A dentate mandible on the left and a long – term edentulous mandible on the right. Note the amount of bone loss in height.	20
2.7	Ridge resorption in the maxilla and the mandible	20
2.8	Profile view of a patient who is edentulous in the maxilla	21
	region. Note the maxillary bone loss effect on the lack of vermilion border of the lip and deep labial folds. The lower	

lip has a normal vermilion border and the muscles to the anterior lower jaw are still attached, providing a normal contour.

2.9	A typical self – tapping implant	23
2.10	Diagram of a typical dental implant. The crown (unlabelled)	25
	is designed to mimic natural tooth	25
2.11	Subperiosteal (ramus frame) implant	26
2.12	Patent diagram of intramucosal implants	27
2.13	Transosteal implant, as installed in the mandible	28
2.14	A cluster of finite element with nodes	31
2.15	The direction of forces generated at the implant and bone	33
2.15	interface resulting from axial loading	
2.16	The three planes of the oral cavity, along with their	34
	associated forces	
2.17	Common geometries for dental implants	37
2.18	Various thread configuration parameters of a dental	38
/ 10		
2.10	implant	
2.10	implant	
3.1	implant Overall research methodology flowchart for this study	42
		42 45
3.1	Overall research methodology flowchart for this study	
3.1 3.2	Overall research methodology flowchart for this study Design framework used in this study	45
3.1 3.2 3.3	Overall research methodology flowchart for this study Design framework used in this study The QFD diagram, also known as the 'house of quality'	45 47
3.1 3.2 3.3 3.4	Overall research methodology flowchart for this study Design framework used in this study The QFD diagram, also known as the 'house of quality' Dental implant concept 1	45 47 54
3.1 3.2 3.3 3.4 3.5	Overall research methodology flowchart for this study Design framework used in this study The QFD diagram, also known as the 'house of quality' Dental implant concept 1 Dental implant concept 2	45 47 54 54
3.1 3.2 3.3 3.4 3.5 3.6	Overall research methodology flowchart for this study Design framework used in this study The QFD diagram, also known as the 'house of quality' Dental implant concept 1 Dental implant concept 2 Dental implant concept 3	45 47 54 54 55
3.1 3.2 3.3 3.4 3.5 3.6 3.7	Overall research methodology flowchart for this study Design framework used in this study The QFD diagram, also known as the 'house of quality' Dental implant concept 1 Dental implant concept 2 Dental implant concept 3 Dental implant concept 4	45 47 54 55 55
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	Overall research methodology flowchart for this study Design framework used in this study The QFD diagram, also known as the 'house of quality' Dental implant concept 1 Dental implant concept 2 Dental implant concept 3 Dental implant concept 4 Final remeshed model of the mandible used in this study	45 47 54 55 55 60
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	Overall research methodology flowchart for this study Design framework used in this study The QFD diagram, also known as the 'house of quality' Dental implant concept 1 Dental implant concept 2 Dental implant concept 3 Dental implant concept 4 Final remeshed model of the mandible used in this study Deformed mesh at the mouth of the hole created due to the	45 47 54 55 55 60

3.11	Framework for the simulation phase	65
3.12	Boundary conditions imposed on the model	68
4.1	Isometric view of the designed dental implant	72
4.2	Isometric view of the implant body	72
4.3	Isometric view of the abutment	73
4.4	Schematics of the dental implant showing the relevant	74
	dimensions	
4.5	Mesh configuration of the combined implant body –	76
	abutment model	
4.6	Equivalent von Mises stress field for the abutment	77
4.7	Equivalent von Mises stress field for the implant body	78
4.8	Areas of stress concentration at the neck of the implant body	79
4.9	Maximum principal stress field at the mandible	80
4.10	Maximum compressive stress field on the mandible	82
4.11	Maximum compressive stress field at the site of	02
	implantation	83
4.12	Shear stress field at the installation site of the implant	84

LIST OF ABBREVIATIONS

- 3 D Three dimensional
- BIC Bone implant contact
- CAD Computer aided design
- CT Computerized tomography
- DICOM Digital Imaging and Communication in Medicine
- FEA Finite element analysis
- FEM Finite element method
- ROI Region of interest
- STL Stereolithographic
- USD US Dollars

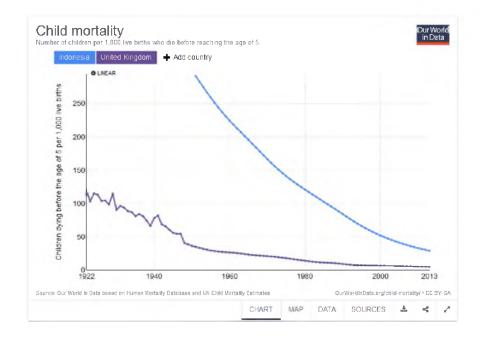
LIST OF SYMBOLS

$\varphi(x, y)$	field variable at spatial co – ordinate (x, y)
В	transversal diameter (breadth) of the skull
d	distance between the alveolar crest and mandibular canal
$d_{ m mean}$	mean distance between the alveolar crest and mandibular canal
I _C	cephalic index
L	anteroposterior diameter (length) of the skull
\mathbf{N}_{a}	node <i>a</i> (referring to a particular node)
t	thickness of the alveolar bone
t _{mean}	mean thickness of the alveolar bone

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Anonymized anthropometric data from five female Indonesian	97
	patients	
В	Mean and standard deviation calculations for anthropometric	99
	data	
С	Three – view schematic of designed dental implant	102

CHAPTER 1


INTRODUCTION

1.1 Overview of the Study

This chapter serves to provide a general overview on the themes of this research. It begins by describing a picture of the supply and demand of dental implants from an economic point of view and progresses to explain the inherent need to design a new implant specifically for the Indonesian population. Next, the objectives of this research, along with its scope is stated, before finally closing with a statement on the limitations of this research as a whole.

1.2 Present Context: The Economics of Dental Implants

The average lifespan for the average human being in the 21^{st} century is now longer than it used to be compared to any other time since the dawn of human civilization. To put this into perspective, Roser (2016) wrote that a 5 – year old child could expect to live an average of 55 years in 1845 compared to 82 years in 2016, demonstrating an increase of lifespan by 27 years within a time interval of 171 years. This pattern is followed by most countries, as shown in Figure 1.1, which shows the child mortality rate in United Kingdom and Indonesia.

Figure 1.1 Child mortality rates in United Kingdom (in purple) and Indonesia (in blue) in the 20th century and the early 21st - century, expressed as the number of children per 1000 live births who die before reaching the age of 5 (Roser, 2016).

The 5 – year benchmark is used because average lifespans are calculated without taking child mortality rate into account. It remained obvious that these improvements do not happen by mere coincidence, but through the various improvements made in the field of medicine. One of the advances in medical technology which has contributed greatly to this increase is the development of dental implantology by a Swedish physician, Dr. Per – Ingvar Branemark.

As the global population continue to possess a longer lifespan, there will consequently be an increase in the demand on the ability of the dental profession to maintain oral health, whose scope also includes effectively treating the edentulous population. Edentulism is defined by Gilchrist (2016) to be 'a condition where a person experiences a complete loss or partial loss of teeth'.

Although there is speculation that the rate of edentulism amongst the population is dropping, the increased number of people living past the onset of the elderly age offsets that number, thus resulting in an increase in the number of patients experiencing edentulism. In fact, the total number of edentulous arches is expected to

reach 37.9 million by the year 2020. Consequently, this results in a rise in the number of patients requiring at least one full arch of tooth replacement. The global market for dental implants is currently estimated to be worth 3.4 billion USD, with expected growth in the coming years (Turkyilmaz and Soganci, 2015).

From an economic point of view, one of the factors affecting the feasibility of a dental implant is its manufacturing cost. The manufacturing cost of a dental implant depends on a few other factors such as the price of materials needed to fabricate the dental implant and the complexity of the design of the dental implant. The second factor, design, is to be the main focus of this research.

1.3 Problem Statement: Suitability of Dental Implants for the Average Indonesian Population

There are many factors affecting the suitability of a dental implant in a patient. This suitability, which is measured by the primary stability of the implant, is important as it provides an indicator for the functional lifespan of a dental implant. The primary stability of a dental implant is the mechanical stability obtained by the implant immediately after insertion. For the ideal dental implant, having a good primary stability means being able to provide strength, rigidity and resistance to movement of the implant before the gum tissue begins to heal (Elias et al., 2012).

The primary stability of the dental implant is very much affected by the design of the implant (Gehrke and Marin, 2015, Elias et al., 2012). The secondary stability is provided by osseointegration and requires the optimal amount of bone – implant contact (BIC) without the interposition of connective tissue. Both of these stabilities constitute the overall stability of the implant, and thus, contribute to its functional lifespan. Although there are studies which focus solely on studying the design and stability of dental implants, both by using simulation and experimental data (Wang et al., 2016, Bicudo et al., 2016), the data is collected based on the anthropometric data of the people residing in that particular region or country. Despite the similarities found in the overall pattern of mechanical behaviour of dental implants regardless of the anthropometric data of the subjects used to conduct the research in these papers, it becomes problematic when individual patients are considered.

Consider the edentulous Indonesian population, for instance. Due to distinct anthropometric differences between the Indonesian population and the African or European population, the dental implants manufactured in those countries, are unsuitable for their use. This results in a host of problems for the average Indonesian. To date, there have been no studies concentrating solely on the stability of dental implants in people of Indonesian descent. The particular focus of this research is on the design of a dental implant and the simulated mechanical behaviour of the designed implant which uses anthropometric data from the average Indonesian population.

1.4 Objectives of Study

There are two objectives which this study will hope to achieve, namely:

- To design a dental implant based on anthropometric data from the average Indonesian population.
- (2) To study the mechanical behaviour of the designed dental implant by using finite – element analysis.

1.5 Scope of Study

The scope of this study is as follows:

- Computer assisted design (CAD) of a new dental implant by using Solidworks[™].
- (2) Sizing of the dental implant through statistical analysis of anthropometric data from five patients.
- (3) Construction of a 3 dimensional (3 D) model of a mandible from data taken from Universitas Airlangga Dental Hospital, Indonesia.
- (4) Finite element analysis (FEA) of the combined implant mandible model.

1.6 Significance of Study

This study will pave the way for the development of a dental implant which can be suitably used by the average Indonesian woman. The suitability here will be determined based on morphological characteristics, which will directly influence the initial stability of the implant. Through the results of this study, it is hoped that a locally – produced implant can be manufactured, which will then reduce the cost of expenditure of edentulous patients in Indonesia.

1.7 Limitations of Study

There are two limitations in this study, and they are as follows:

- (1) The sample size is made up of only six women, with an age range of 46 to 59 years old.
- (2) The model of the mandible is developed to cover only the region of interest i.e. the molar region.

The first limitation is due to the difficulty in securing medical consent when using biological data from living persons. Only six patients consented to having their data used for this study. The second limitation is due to the redundancy involved in developing models that are larger in size than necessary. If a larger model is developed, not only it will have no discernible effect on the final results (since only the area in the immediate vicinity of the dental implant will experience noteworthy changes), it will also greatly increase the computation time since a greater number of elements and nodes will be present.

REFERENCES

- Abraham, C.M., 2014. A Brief Historical Perspective on Dental Implants, Their Surface Coatings and Treatments. The Open Dentistry Journal. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4040928/ [Accessed September 2, 2016]
- Abuhussein, H., Pagni, G., Rebaudi, A., Wang, H.L., 2010. The effect of thread pattern upon implant osseointegration: Review. Clin. Oral Implants Res. 21, 129–136. doi:10.1111/j.1600-0501.2009.01800.x.
- Akhlaghi, M., Khalighi, Z., Vasigh, S., Yousefinejad, V., 2014. Sex determination using mandibular anthropometric parameters in subadult Iranian samples. J. Forensic Leg. Med. 22, 150–153. doi:10.1016/j.jflm.2013.12.006
- Alshehri, F.A., 2016. The role of lasers in the treatment of peri-implant diseases: A review. *The Saudi Dental Journal*, 28(3), pp.103–108. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5021821/ [Accessed December 24, 2016].
- Aquilino, S.A., Shugars, D.A., Bader, J.D., White, B.A., 2001. Ten-year survival rates of teeth adjacent to treated and untreated posterior bounded edentulous spaces. The Journal of Prosthetic Dentistry, 85(5), pp.455–460. Available at: http://www.sciencedirect.com/science/article/pii/S0022391301336636 [Accessed July 14, 2016]
- Askary, A.E.S.E., 2008. Fundamentals of Esthetic Implant Dentistry, John Wiley & Sons.
- Badr El Dine, F.M.M., El Shafei, M.M., 2015. Sex determination using anthropometric measurements from multi-slice computed tomography of the 12th thoracic and the

first lumbar vertebrae among adult Egyptians. Egypt. J. Forensic Sci. 5, 82–89. doi:10.1016/j.ejfs.2014.07.005

- Baggi, L., Cappelloni, I., Maceri, F., Vairo, G., 2008. Stress-based performance evaluation of osseointegrated dental implants by finite-element simulation. Simul. Model. Pract. Theory 16, 971–987. doi:10.1016/j.simpat.2008.05.009
- Bicudo, P., Reis, J., Deus, A.M., Reis, L., Vaz, M.F., 2016. Mechanical behaviour of dental implants. Procedia Struct. Integr. 1, 26–33. doi:10.1016/j.prostr.2016.02.005
- Blumenfeld, J., 2000. "Racial Identification in the Skull and Teeth," Totem: The University of Western Ontario Journal of Anthropology: Vol. 8: Iss. 1, Article 4. Available at: http://ir.lib.uwo.ca/totem/vol8/iss1/4
- Boas, F., 1899. The Cephalic Index. American Anthropologist, 1: 448–461. doi:10.1525/aa.1899.1.3.02a00020
- Branemark, P.-I., 1983. Osseointegration and its experimental background. The Journal of Prosthetic Dentistry, 50(3), pp.399–410.
- Chun, H.J., Cheong, S.Y., Han, J.H., Heo, S.J., Chung, J.P., Rhyu, I.C., Choi, Y.C., Baik, H.K., Ku, Y. & Kim, M.H. 2002. Evaluation of design parameters of osseointegrated dental implants using finite element analysis. Journal of Oral Rehabilitation 29: 565–574.
- Dal-Carlo, L., Pasqualini, M.E., Carinci, F., Mondani, P.M., Fanali, S., Vannini, F., Nardone, N., 2013. A retrospective study on needle implants positioned in the posterior inferior sector: surgical procedure and recommendations. Annals of Oral and Maxillofacial Surgery, 1(2). Available at: http://www.dentistaitaliano.it/documents/AOeMFS.apr2013.DalCalo-Nardone.pdf.
- Demirdjan, E., 1998. The Complete Maxillary Subperiosteal Implant: An Overview of its Evolution. Journal of Oral Implantology, XXIV(4), pp.196–197. Available at: http://www.joionline.org/doi/pdf/10.1563/1548-1336%281998%2924%3C196%3ATCMSIA%3E2.0.CO%3B2?code=aaid-premdev [Accessed October 29, 2016].

- Drake, R.L., Vogl, W., Mitchell, A.W.M. and Gray, H., 2014. Gray's Anatomy for Students. 3rd ed. Philadelphia, PA: Churchill Livingstone/Elsevier.
- Elias, C.N., Rocha, F.A., Nascimento, A.L., Coelho, P.G., 2012. Influence of implant shape, surface morphology, surgical technique and bone quality on the primary stability of dental implants. J. Mech. Behav. Biomed. Mater. 16, 169–180. doi:10.1016/j.jmbbm.2012.10.010
- Evasic, R.W., 1983. Intramucosal implants: A review of concepts and techniques Single inserts and tandem denserts. The Journal of Prosthetic Dentistry, 49(5), pp.695–701.
- Floyd, P., Palmer, P., Palmer, R., 1999. Dental implants: Radiographic technique.
 British Dental Journal, 187(7), pp.359–365. Available at: http://www.nature.com/bdj/journal/v187/n7/full/4800280a.html [Accessed August 20, 2016].
- Frost, H.M., 1990. Skeletal structural adaptations to mechanical usage (SATMU): 1. Redefining Wolffs Law: The bone modeling problem. The Anatomical Record, 226(4), pp.403–413.
- Gaviria, L., Salcido, J.P., Guda, T., Ong, J.L., 2014. Current trends in dental implants.
 J. Korean Assoc. Oral Maxillofac. Surg. 40, 50–60. doi:10.5125/jkaoms.2014.40.2.50
- Gehrke, S.A., Marin, G.W., 2015. Biomechanical evaluation of dental implants with three different designs: Removal torque and resonance frequency analysis in rabbits. Ann. Anat. 199, 30–35. doi:10.1016/j.aanat.2014.07.009
- Geng, J.P., Xu, W., Tan, K.B.C. and Liu, G.R., 2004. 'Finite element analysis of an Osseointegrated stepped screw dental implant', *Journal of Oral Implantology*, 30(4), pp. 223–233. doi: 10.1563/0654.1.
- Gilchrist, J., What is Edentulism? *wiseGEEK: clear answers for common questions*. Available at: http://www.wisegeek.net/what-is-edentulism.htm [Accessed August 29, 2016].

- Han, H.S., 2009. Design of new root-form endosseous dental implant and evaluation of fatigue strength using finite element analysis." MS (Master of Science) thesis, University of Iowa, 2009. URL: http://ir.uiowa.edu/etd/294.
- He, W., Goodkind, D. and Kowal, P. (2016) *An Aging World: 2015 International Population Report.* United States of America: United States Census Bureau.
- Herrmann, I., Lekholm, U., Holm, S. and Kultje, C. 2005. 'Evaluation of patient and implant characteristics as potential prognostic factors for oral implant failures', *The International Journal of Oral & Maxillofacial Implants.*, 20(2), pp. 220–30. In-line Citation
- Hutton, D.V., 2004. Fundamentals of Finite Element Analysis, Boston: McGraw-Hill Higher Education.
- Jivraj, S., Chee, W., 2006. Rationale for dental implants. *British Dental Journal*, 200(12), pp.661–665. URL: http://www.nature.com/bdj/journal/v200/n12/full/4813718a.html.
- Karakas, H.M., Harma, A., Alicioglu, B., 2013. The subpubic angle in sex determination: Anthropometric measurements and analyses on Anatolian Caucasians using multidetector computed tomography datasets. J. Forensic Leg. Med. 20, 1004–1009. doi:10.1016/j.jflm.2013.08.013
- Karthikeyan, I., Desai, S. and Singh, R. .2012. 'Short implants: A systematic review', *Journal of Indian Society of Periodontology.*, 16(3), pp. 302–12.
- Kim, Y.K., Yi, Y.J., Kim, S.G., Cho, Y.S., Yang, C.M., Liang, P.C., Chen, Y.Y., I, L.L., Sim, C., Tan, W., Ser, G.W., Yue, D., Yi, M., Ping, G. 2010. Short-term, Multi-center Prospective Clinical Study of Short Implants Measuring Less Than 7mm. Journal of Korean Dental Science 11–16.
- Lekholm, U., Zarb, G.A.,. In: Patient selection and preparation. Tissue integrated prostheses: osseointegration in clinical dentistry. Branemark P.I., Zarb G.A., Albrektsson T., editor. Chicago: Quintessence Publishing Company; 1985. p. 199–209.

- Li, T., Kong, L., Wang, Y., Hu, K., Song, L., Liu, B., Li, D., Shao, J., Ding, Y., 2009. Selection of optimal dental implant diameter and length in type IV bone: a threedimensional finite element analysis. Int. J. Oral Maxillofac. Surg. 38, 1077–1083. doi:10.1016/j.ijom.2009.07.001
- Li, T., Hu, K., Cheng, L., Ding, Y., Shao, J. and Kong, L. 2011. 'Optimum selection of the dental implant diameter and length in the posterior mandible with poor bone quality – A 3D finite element analysis', *Applied Mathematical Modelling*, 35(1), pp. 446–456. doi: 10.1016/j.apm.2010.07.008.
- Linkow, L.I. 2002, Overview of principles of intramucosal or button implantation. Overview of principles of intramucosal or button implantation. Available at: http://www.linkowlibrary.org/dental-book/3064/Overview-of-principles-ofintramucosal-or-button-implantation [Accessed December 29, 2016].
- Ma, P., Xiong, W., Tan, B., Geng, W., Liu, J., Li, W. and Li, D. 2014 'Influence of thread pitch, helix angle, and Compactness on Micromotion of immediately loaded Implants in Three types of bone quality: A Three-Dimensional finite element analysis', *BioMed Research International*, 2014, pp. 1–13. doi: 10.1155/2014/983103.
- Marković, A., Calvo-Guirado, J.L., Lazic, Z., Gomez-Moreno, G., Calasan, D., Guardia, J., Colic, S., Aguilar-Salvatierra, A., Gacic, B., Delgado-Ruiz, R., Janjic, B., Misic, T., 2011. Evaluation of Primary Stability of Self-Tapping and Non-Self-Tapping Dental Implants. A 12-Week Clinical Study. Clinical Implant Dentistry and Related Research, 15(3), pp.341–349. Available at: http://s3.amazonaws.com/academia.edu.documents/44918499/Evaluation_of_Primary_Stability_of_Self-20160420-17604-

4g8tz8.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1496 561114&Signature=OkVqeDT2qE14b%2BGXUG0YnfzWWX4%3D&response -content-

disposition=inline%3B%20filename%3DEvaluation_of_Primary_Stability_of_S elf-.pdf [Accessed June 5, 2016].

Misch, C.E. 2015. Dental implant prosthetics. 2nd edition. ed. St. Louis, Missouri: Elsevier Mosby.

- Moraschini, V., Poubel, L.D.C., Ferreira, V., Barboza, E.D.S., 2015. Evaluation of survival and success rates of dental implants reported in longitudinal studies with a follow-up period of at least 10 years: a systematic review. International Journal of Oral and Maxillofacial Surgery 44, 377–388. doi:10.1016/j.ijom.2014.10.023
- Olate, S., Lyrio, M., de Moraes, M., Mazzonetto, R. and Moreira, R. 2010. 'Influence of diameter and length of implant on early dental implant failure', *Journal of Oral* and Maxillofacial Surgery., 68(2), pp. 414–9.
- Odin, G., Savoldelli, C., Bouchard, P.O., Tillier, Y.,. 2010. Determination of Young's modulus of mandibular bone using inverse analysis. Medical Engineering and Physics, Elsevier, 32 (6), pp.Pages 630-637.
- Pal, S., 2014. Design of Artificial Human Joints & Organs, Springer-Verlag New York.
- Palmer, B., 2011. Can you tell a person's race from his or her skull? Slate Magazine. Available at: http://www.slate.com/articles/news_and_politics/explainer/2011/01/alas_poor_y orick_or_is_it_othello.html [Accessed September 5, 2016]
- Parr, N., 2005. Determination of Ancestry from Discrete Traits of the Mandible. University of Indianapolis Archeology & Forensics Laboratory. URL: http://archlab.uindy.edu.
- Renouard, F., Nisand, D. 2006. 'Impact of implant length and diameter on survival rates', *Clinical Oral Implants Research.*, 17, pp. 35–51.
- Rismanchian, M., Bajoghli, F., Mostajeran, Z., Fazel, A., Eshkevari, P. 2009. 'Effect of Implants on maximum bite force in edentulous patients', *Journal of Oral Implantology*, 35(4), pp. 196–200. doi: 10.1563/1548-1336-35.4.196.
- Roser, M., 2017. Life Expectancy [WWW Document]. Our World In Data. URL https://ourworldindata.org/life-expectancy/ (accessed 8.25.17).
- Ryu, H.-S., Namgung, C., Lee, J.-H., Lim, Y.-J., 2014. The influence of thread geometry on implant osseointegration under immediate loading: a literature review. The Journal of Advanced Prosthodontics 6, 547.

- Sauer, N.J., 1992. Forensic anthropology and the concept of race: If races dont exist, why are forensic anthropologists so good at identifying them? Social Science & Medicine, 34(2), pp.107–111. Available at: http://anthropology.msu.edu/anp206us15/files/2012/05/Sauer-1992-Forensic-Anthropology-Race-Concept-1.pdf [Accessed October 23, 2016].
- Seth, S., Kalra, P. 2013 'Effect of Dental Implant Parameters on Stress Distribution at Bone-Implant Interface', *International Journal of Science and Research*, 2(6), pp. 121–124.
- Taylor, T.D. & Laney, W.R., n.d. Dental Implants: Are They for Me? Available at: http://dentalimplants.uchc.edu/about/types.html [Accessed October 18, 2016].
- Turkyilmaz, I., Soganci, G. (2015). Rationale for Dental Implants, Current Concepts in Dental Implantology, Associate Prof. Ilser Turkyilmaz (Ed.), InTech, DOI: 10.5772/59815. Available from: https://www.intechopen.com/books/currentconcepts-in-dental-implantology/rationale-for-dental-implants
- Ullman, D.G. 2011. The Mechanical Design Process. 3rd edition. New York: McGraw-Hill.
- Ulusoy, C., Darendeliler, N., 2008. Effects of Class II activator and Class II activator high-pull headgear combination on the mandible: A 3-dimensional finite element stress analysis study. American Journal of Orthodontics and Dentofacial Orthopedics 133. doi:10.1016/j.ajodo.2007.10.03
- Wang, K., Geng, J., Jones, D., Xu, W., 2016. Comparison of the fracture resistance of dental implants with different abutment taper angles. Mater. Sci. Eng. C 63, 164– 171. doi:10.1016/j.msec.2016.02.015
- Weiss, C. & Weiss, A., 2001. Principles and Practice of Implant Dentistry, St. Louis, Mo: Mosby.
- Winter, D. A., 2009. Anthropometry, in Biomechanics and Motor Control of Human Movement, Fourth Edition, John Wiley & Sons, Inc., Hoboken, NJ, USA. doi: 10.1002/9780470549148.ch4

Wu, T., Liao, W., Dai, N., Tang, C., 2010. Design of a custom angled abutment for dental implants using computer-aided design and nonlinear finite element analysis. J. Biomech. 43, 1941–1946. doi:10.1016/j.jbiomech.2010.03.017