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ABSTRACT 

 

 

 

 
 Sawdust is one of the common lignocellulosic waste biomass produced during the 

process of planning mills, moulding plants and furniture manufacturing.  In practice, the 

sawdust is discarded in landfill areas, causing dust and dirt pollution in nearby localities.  

Therefore, the need to find an efficient and practical approach to revalorize sawdust as a 

starting raw material in the production of lignocellulolytic enzymes is essential as a way to 

manage and turn the residues into value added products.  Prospecting for efficient degrading 

lignocellulose microorganisms is crucial to facilitate the process of lignocellulolytic 

enzymes production from the lignocellulosic biomass.  This study aimed to exploit 

microorganisms isolated from gut of termite Bulbitermes sp. in producing lignocellulolytic 

enzymes under solid-state fermentation (SSF) system by using untreated sawdust as 

substrate.  Seventeen bacterial and five fungal with positive lignocellulolytic enzymes 

activities were successfully isolated from the gut of two hundred termites.  Four isolates 

identified as Aspergillus sp. A1, Bacillus sp. B1, Bacillus sp. B2 and Brevibacillus sp. Br3 

were selected for further characterization.  Among the isolates, Aspergillus sp. A1 showed 

highest activities of lignin peroxidase (LiP) (729.12 U/g) and β-glucosidase (22.97 U/g).  

The highest activities of endoglucanase (138.77 U/g) and manganese peroxidase (MnP) 

(47.73 U/g) were recorded in Bacillus sp. B1.  The Bacillus sp. B2 produced the highest 

activities of exoglucanase (32.16 U/g) and laccase (71.18 U/g).  The highest xylanase 

activity (104.96 U/g) was observed in Brevibacillus sp. Br3.  The production of 

endoglucanase, β-glucosidase, xylanase, LiP and laccase were approximated 17‒93% higher 

in co-culture compared to individual culture.  Compared to other di-, tri- and quad-mixed 

culture, Aspergillus sp. A1 (A1) and Bacillus sp. B1 (B1) co-culture produced the highest 

lignocellulolytic enzymes activities (endoglucanase, 190.1; exoglucanase, 13.5; β-

glucosidase, 33.7; xylanase, 202.5; LiP, 713.5; MnP, 23.3 and laccase, 52.1 U/g).  The 

interaction between A1 and B1 is not antagonistic.  Study on the effect of SSF operational 

variables showed that the use of unsieved sawdust produced significantly higher activities of 

exoglucanase, xylanase, LiP and laccase compared to that of sieved sawdust.  In addition, 

temperature, pH and moisture content significantly impacted lignocellulolytic enzymes 

production.  In comparing to control, moistening the unsieved sawdust with Mandel basal 

medium (pH 8) to 1:2.5 (solid:moisture) ratio, and incubation at 35 °C for 9 days produced 

1.2‒49.4 fold higher lignocellulolytic enzymes activities.  Endoglucanase, β-glucosidase and 

xylanase could be classified as moderately thermostable enzymes with better stability in 

acidic pH range.  Meanwhile, ligninases possessed thermophilic and alkaliphilic 

characteristics.  The co-culture produced 1.9‒11.8 fold higher reducing sugars than those 

yielded by single cultures in the enzymatic degradation of sawdust.  The use of co-culture 

enzymes also produced 3.6‒85.4% higher reducing sugars as well as 1.3‒2.3 times higher 

raffinose, cellobiose, maltose, glucose and xylose concentrations compared to that of 

commercial cellulase (Celluclast) solution.  As conclusion, this work has generated a 

microbial co-culture that could be used for improved lignocellulolytic enzymes and reducing 

sugars production using untreated sawdust as substrate.  
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ABSTRAK 

 

 

 

 
Hampas kayu merupakan salah satu sisa biojisim lignoselulosa yang dihasilkan semasa 

proses pengilangan terancang, loji pengacuan dan pembuatan perabot.  Kebiasaannya, hampas 

kayu dibuang di kawasan pelupusan sampah, mengakibatkan pencemaran habuk dan debu di 

kawasan setempat yang berhampiran.  Oleh itu, mencari pendekatan yang efisien dan praktikal 

untuk meningkatkan nilai hampas kayu adalah penting sebagai cara untuk mengurus dan 

menukar sisa ini kepada produk berguna dengan menggunakannya sebagai bahan asas dalam 

penghasilan enzim lignoselulolitik.  Pengenalpastiaan mikroorganisma yang boleh menguraikan 

lignoselulosa secara efisien adalah penting untuk memudahkan proses penghasilan enzim 

lignoselulolitik dari biojisim lignoselulosik.  Matlamat kajian ini adalah untuk mengeksploitasi 

mikroorganisma yang dipencilkan daripada usus anai-anai Bulbitermes sp. dalam menghasilkan 

enzim lignoselulolitik di bawah sistem penapaian keadaan pepejal (SSF) menggunakan hampas 

kayu yang tidak dirawat sebagai substrat.  Tujuh belas bakteria dan lima kulat dengan aktiviti 

enzim lignoselulolitik yang positif telah berjaya dipencilkan daripada usus dua ratus anai-anai.  

Empat pencilan dikenalpasti sebagai Aspergillus sp. A1, Bacillus sp. B1, Bacillus sp. B2 dan 

Brevibacillus sp. Br3 telah dipilih untuk pencirian yang lebih lanjut.  Diantara pencilan-pencilan 

tersebut, Aspergillus sp. A1 menunjukkan aktiviti lignin peroksidase (LiP) (729.12 U/g) dan β-

glukosidase tertinggi (22.97 U/g).  Aktiviti endoglukanase (138.77 U/g) dan manganese 

peroksidase (MnP) (47.73 U/g) tertinggi telah direkodkan oleh Bacillus sp. B1.  Bacillus sp. B2 

menghasilkan aktiviti eksoglukanase (32.16 U/g) dan lakase (71.18 U/g) tertinggi.  Aktiviti 

xilanase tertinggi (104.96 U/g) dicatatkan oleh Brevibacillus sp. Br3.  Penghasilan 

endoglukanase, β-glukosidase, xilanase, LiP dan lakase adalah dianggarkan 17‒93% lebih tinggi 

dalam kultur bersama berbanding dengan kultur tunggal.  Perbandingan antara dwi-, tri- dan 

kuad-kultur bercampur menunjukkan, kultur bersama Aspergillus sp. A1 (A1) dan Bacillus sp. 

B1 (B1) menghasilkan aktiviti enzim lignoselulolitik tertinggi (endoglukanase, 190.1; 

eksoglukanase, 13.5; β-glukosidase, 33.7; xilanase, 202.5; LiP, 713.5; MnP, 23.3 dan lakase, 

52.1 U/g).  A1 dan B1 mempunyai hubungan tidak antagonis.  Kajian mengenai kesan parameter 

operasi SSF menunjukkan hampas kayu yang tidak diayak menghasilkan aktiviti eksoglukanase, 

xilanase, LiP dan lakase jauh lebih tinggi berbanding dengan hampas kayu yang diayak.  Selain 

itu, suhu, pH dan kandungan kelembapan memberi kesan yang signifikan terhadap penghasilan 

enzim lignoselulolitik.  Hampas kayu tidak diayak yang dilembapkan dengan medium Mandel 

asas (pH 8) kepada nisbah 1:2.5 (pepejal:kelembapan) pada suhu 35 °C untuk 9 hari 

menghasilkan 1.2‒49.4 kali ganda lebih tinggi aktiviti enzim lignoselulolitik berbanding dengan 

eksperimen kawalan.  Endoglukanase, β-glukosidase dan xilanase boleh dikategorikan sebagai 

enzim stabil haba sederhana dan mereka juga lebih stabil dalam pH berasid.  Manakala, ligninase 

mempunyai ciri-ciri stabil haba dan stabil alkali.  Kultur bersama menghasilkan 1.9‒11.8 kali 

ganda lebih tinggi gula terturun daripada yang dihasilkan oleh kultur tunggal dalam proses 

penguraian berenzim hampas kayu.  Penggunaan enzim kultur bersama juga menghasilkan 3.6‒

85.4% lebih tinggi gula terturun dan juga 1.3‒2.3 kali ganda kepekatan rafinosa, selobiosa, 

maltosa, glukosa dan xilosa berbanding dengan menggunakan larutan enzim selulase komersial 

(Celluclast).  Kesimpulannya, kajian ini telah menghasilkan mikrob kultur bersama yang boleh 

digunakan untuk meningkatkan penghasilan enzim lignoselulolitik dan gula terturun 

menggunakan hampas kayu yang tidak dirawat sebagai substrat. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Research 

 

 

Wood-based industry in Malaysia began in the early 1900s (Ramasamy et al., 

2015).  Starting with only to meet the domestic demand at the time, wood-based 

activities in Malaysia such as logging, sawmilling, primary and secondary 

manufacturing, have played an important role in the economic development of the 

country, in which they contributed 2% of the Malaysian Gross Domestic Product 

(GDP) and 2.7% of the country’s total merchandise exports (Malaysian Timber 

Council, 2014).  In year 2014, Malaysia has produced 3,218,515 m
3
 of logs, 

1,893,949 m
3
 of sawn timber and 3,099,371 m

3
 of plywood, with Japan, USA and 

India are the top three leading export destinations for these local timber products.  

The export of Malaysian wood-based products has recorded a positive growth of 

5.1% with total exports of RM 20.5 billion (Malaysian Timber Council, 2014).  

Wooden furniture remained as the biggest export item contributing RM 6.3 billion, 

followed by plywood (RM 5.2 billion), sawntimber (RM 2.5 billion), logs (RM 2.1 

billion) and Builders’ Carpentry and Joinery (BCJ) (RM 1 billion).  While these 

wood-based industries generate profits, they also yielded a huge amount of wood 

wastes, which can potentially give rise to environmentally sensitive disposal issues.  

The issues are particularly obvious in sawmills where most of the manufacturing 

technology in used is old and obsolete (Tye et al., 2011). 
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It was reported that the generation of wood wastes in the sawmilling sector of 

Peninsular Malaysia was approximately 45 to 50% of the total volume of saw-log 

input (Ramasamy et al., 2015).  The production of the wood waste can be found in 

the form of off-cuts, slabs, shavings, bark and sawdust (Mekhilef et al., 2011).  As 

one of the most common residues found in wood-manufacturing entities, sawdust is 

largely produced during the process of planning mills, moulding plants and furniture 

manufacturing (Rafiqul and Sakinah, 2012).  In practise, the residues are left 

accumulated or discarded in landfill areas, causing environmental pollution through 

the generation of dust and dirt.  Moreover, dumping sawdust to landfills involves 

additional cost due to its handling and transportation, which is another burden for the 

industries.  Burning had also been applied as one of the economical method to 

dispose sawdust.  However, the high sulphur content of wood may result in the 

formation of sulphur dioxide during incineration, thereby aggravating air pollution 

and decreasing air quality in the vicinity (Buraimoh et al., 2015).  In view of these 

issues, research on the utilization of sawdust to turn into value-added products is of 

high interest as a way to manage wood residues, especially in the country like 

Malaysia which has a total of 3975 wood-based manufacturing entities operating 

within the country (Ramasamy et al., 2015). 

 

 

Sawdust had been used as a raw material in the derivation of biochar (Ghani 

et al., 2013), commercial mineral-bonded cement composites (Frybort et al., 2008) 

and as bulking agent in the composting systems (Zhou et al., 2014).  The utilization 

of sawdust also includes as a source of fuel for the cyclone gasification system 

(Miskam et al., 2009) and for energy generation in the boilers (Ramasamy et al., 

2015).  Sawdust gained another credit in biomass research area for being classified as 

lignocellulosic material with significant proportion of cellulose, hemicellulose and 

lignin constituted in its chemical composition.  On a dry basis, sawdust contains 

cellulose (31.99%), hemicellulose (13.33%) and lignin (44.36%) with the rest 

consisting of extractives and ash (Belewu, 2006).  Several potential value-added 

products could be derived from biodegradation of these lignocellulose components.  

Degradation of cellulose and hemicellulose polymers could produce hexose or 

pentose sugars which served as important raw material for ethanol production, while 

lignin degradation has huge potential for the synthesis of a number of useful 
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chemicals such as vanillin, phenol, quinone and acetic acids (Hamid et al., 2014).  

Biodegradation of cellulose, hemicellulose and lignin from lignocellulosic residue is 

very much associated to the efficiencies of lignocellulolytic enzymes to degrade the 

lignocellulose components (Sánchez, 2009).  The effectiveness of the enzymatic 

mixture is highly dependent on their specific functionality to degrade specific type of 

lignocellulosic material.  The use of same material for enzymes production and 

degradation was suggested to produce enzymes composition that might be then 

tailored for degradation functionality of that specific material (Pensupa et al., 2013).  

It is therefore logical and necessary to produce on-site, tailor-made lignocellulolytic 

enzymes that are optimized for biodegradation of specific lignocellulosics material.               

 

 

Due to their degrading capabilities, lignocellulolytic enzymes find application 

in various type of industrial field such as textile, detergent, food, animal feed, pulp 

and paper (Niladevi, 2007; Singh et al., 2007).  The field of industrial enzymes 

production represents the heart of biotechnology.  It was estimated that the global 

market for commercial enzymes reached $3.3 billion in 2010, with the annual growth 

rate of 6% over 5-year forecast period (Thomas et al., 2013).  One of the major 

issues faced by the global enzymes manufacturing companies is the high cost of raw 

material, which contributes 40‒60% of the total production cost (Singhania et al., 

2010).  Therefore, efforts were made to reduce the cost of production by using 

cheaper and abundantly available substrates to produce enzymes with high activity 

(Alam et al., 2009a; Jabasingh and Nachiyar, 2011; Bansal et al., 2012; Yoon et al., 

2014).  At present, there are limited studies that describe the utilization of sawdust as 

a substrate for the production of lignocellulolytic enzymes (Liu et al., 2006; Poorna 

and Prema, 2007; Bansal et al., 2012).  The sawdust was either used as the minor 

substrate or been chemically pretreated prior to fermentations.  None have focused 

on the use of untreated sawdust as a sole substrate for enzymes production.  The use 

of untreated substrate is preferred because additional pre-treatment process with 

either acidic or alkaline solvents may eventually produce by-products such as 

furfural, 5-hydroxymethyl-2 furfural, acetic acid, phenols, heavy metals, levulinic 

acids and formic acids, with inhibitory effects to the microbial growth and respiration 

(Ang et al., 2013).     
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Lignocellulosic materials are fermented by lignocellulolytic microorganisms 

in the process to produce lignocellulolytic enzymes.  The fermentation can be 

conducted via two different fermentation approaches, submerged fermentation or 

solid state fermentation (Hansen et al., 2015).  Submerged fermentation (SmF) has 

been the most popular and conventional fermentation technology used by enzymes 

manufacturing companies such as Novozymes and Genencor (Singhania et al., 

2010).  However, in nature, the growth and lignocellulose utilization of 

microorganisms secreting lignocellulolytic enzymes are more closely resemble solid-

state fermentation (SSF) condition than the presence of excess water provided by 

SmF (Hansen et al., 2015).  SSF is the fermentation method that is carried out 

without apparent presence of water, but with sufficient moisture to support the 

growth of microorganisms on the solid matrix (Pandey, 2003).  One of the most 

added advantages offered by SSF is that enzymes titers are higher than those 

obtained from SmF (Couto and Sanromán, 2005).  This advantage has been 

associated with a larger biomass and lower product breakdown as observed in SSF 

process (Viniegra-González et al., 2003).  In addition, energy expenditure is lower 

for SSF compared to SmF since less water is needed, no mechanical mixing and less 

energy requirement in downstream processing (Hansen et al., 2015).  Furthermore, 

higher concentration of products can be obtained from SSF, making purification 

works such as concentration and freeze drying are undesirable (Zhuang et al., 2007).    

 

 

The lignocellulolytic enzymes production also depends on the type of 

microbial strain and the strains giving higher activities on lignocellulosic material in 

SSF condition are important.  Aspergillus, Trichoderma, Rhizopus, Fusarium and 

Penicillium are some of the fungi genera reported able to produce lignocellulolytic 

enzymes in SSF (Hansen et al., 2015).  For bacteria, Bacillus and Streptomyces are 

the most common been reported (Krishna, 1999; Niladevi et al., 2007).  The fungal 

and bacterial strains were isolated from substrata containing lignocellulosic carbon 

source such as residues from different agricultural sectors, soil and debris from cereal 

production (Jabasingh and Nachiyar, 2011; Irfan et al., 2012; Ang et al., 2013).  

Another interesting source to prospect for lignocellulolytic microorganisms is from 

the guts of insects.  Some insects relied upon their gut microbial community to 

degrade lignocellulosic material as their nutrient sources.  One of these insects is 
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termite.  Termites were reported to harbouring diverse array of lignocellulolytic 

microorganisms inside their gut (Dheeran et al., 2012).  Several lignocellulolytic 

microorganisms such as Pseudomonas, Bacillus, Enterobacter, Streptomyces, 

Paenibacillus, Aspergillus and Sporothrix had been successfully isolated from 

termite species of Coptotermes curvignathus (Ramin et al., 2009), Reticulitermes 

santonensis (Matkar et al., 2013) and Amitermes hastatus (Le Roes-Hill et al., 2011).  

However, the capability of the microorganisms originated from termite’s gut to 

produce lignocellulolytic enzymes have only been studied in culture employing SmF 

technique.  The potential of microorganisms isolated from termite gut in producing 

lignocellulolytic enzymes under SSF remained to be addressed.     

 

 

Earlier reports are available for the production of lignocellulolytic enzymes 

by single culture of bacteria and fungi from termite gut (Wenzel et al., 2002; Ramin 

et al., 2009; Le Roes-Hill et al., 2011; Dheeran et al., 2012).  However, a single 

microorganism cannot produce all the enzymes necessary for complete 

bioconversion of lignocellulose and different microorganisms are normally co-exist 

symbiotically on solid substrates in nature (Yoon et al., 2014).  Thus, co-culturing of 

microorganisms which act synergistically for rapid bioconversion of lignocellulosic 

biomass under SSF, is attractive (Wang et al., 2006; Kumar et al., 2008a).  Co-

culture defined as inoculation of different specified microbial strains under aseptic 

conditions, had been used to achieve improved production of biologically active 

compounds such as organic acids, vitamins and antibiotics (Bader et al., 2010).  

Similarly, co-culture is beneficial for production of lignocellulolytic enzymes during 

biodegradation of lignocellulosic substrate (Brijwani et al., 2010; Dhillon et al., 

2011; Kolasa et al., 2014) as they offer higher productivity of enzymes and better 

adaptability compared to single culture (Dashtban et al., 2010).  Hence, it is 

hypothesized that through co-culture techniques, improved level of lignocellulolytic 

enzymes produced by synergistic interactions between different microorganisms may 

be achieved in single process.  It may further eliminates the requirement to cultivate 

multiple single cultures separately, followed by enzymes blending which then 

increases the cost of double equipment needed (Kolasa et al., 2014).  As termite gut 

was known to contain dense population of microbiota that work co-operatively in 



6 
 

lignocellulosic material decomposition, co-culturing microorganisms originated from 

such sources remained as an interesting topic to be further explored.   

 

 

 

 

1.2 Objectives 

 

 

The objectives of this research are as follows: 

 

 

1. To isolate, screen and identify the termite guts microorganisms with the 

capability to produce lignocellulolytic enzymes in SSF using untreated sawdust 

as substrate. 

2. To construct and to evaluate the compatibility of the members in microbial co-

culture with promising level of lignocellulolytic enzymes activities.  The 

profile of lignocellulolytic enzymes produced by both single and microbial co-

culture and its relation with exopolysaccharides production, N-acetyl-ᴅ-

glucosamine and protein concentration will be analysed.    

3. To study the effect of sawdust particle size, incubation temperature, pH and 

moisture content on the production of lignocellulolytic enzymes by varying one 

variable at a time. 

4. To characterize the lignocellulolytic enzymes produced by a selected microbial 

co-culture in terms of its optimum pH, optimum temperature, pH stability and 

thermal stability.  A sawdust-based biorefining strategy for reducing sugars 

production will be developed.   
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1.3 Scope of the Research 

 

 

This study focused in investigating the capability of termite gut’s 

microorganisms to produce lignocellulolytic enzymes under SSF by using untreated 

sawdust as solid substrate.  The bacterial and fungal isolates from Bulbitermes sp. 

termite gut were screened through qualitative approach by using plate base technique 

and the lignocellulolytic activities were assessed quantitatively in SSF condition.  

Lignocellulolytic activities were calculated based on the endoglucanase, 

exoglucanase, β-glucosidase, xylanase, lignin peroxidase, manganese peroxidase and 

laccase activities.  The isolates with highest lignocellulolytic activities were selected, 

identified and further used for the development of microbial co-culture.   

 

 

The effect of sawdust particle size, incubation temperature, pH of the medium 

and moisture content on lignocellulolytic enzymes production were studied.  An 

optimal condition for the enzymes production was set.  Lignocellulolytic enzymes 

obtained from the optimal SSF condition were characterized by means of 

determination of their optimal temperature, pH, and stability. 

 

 

The biodegradation potential by single and microbial co-culture cultivated 

under SSF were studied.  A sawdust-based biorefining strategy was developed by 

extracting the lignocellulolytic enzymes produced from SSF process and then used to 

hydrolyse the fermented sawdust.  The amounts of reducing sugars obtained after the 

hydrolysis process were measured.   
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1.4 Significance of the Research                          

 

 

As Malaysia has significant amount of woody-based activities such as 

logging and saw-milling, the mass generation of sawdust as the most common wood 

residues produced by the forestry related industries, can potentially give rise to 

environmentally sensitive disposal issues (Hoi, 2003).  This had urged the need to 

properly utilize the sawdust to turn into various value-added products including as 

raw material for the production of lignocellulolytic enzymes.  Below are several 

identified issues which make the current research is significance:  

 

 

i. Improper management of wood residues including sawdust can give an adverse 

effect towards the air quality, which remained an issue to be solved by the parties 

involved including the local community, the wood-based industries themselves 

and the government enforcement bodies.  Sawdust is therefore proposed as an 

alternative raw material that serves as substrate for the production of 

lignocellulolytic enzymes.   

ii. The afore mentioned suggestion is in line with the Malaysian government effort 

in exploiting the country’s biomass resources up to its optimum level as outlined 

in National Biomass Strategy 2020 (Agensi Inovasi Malaysia, 2011).  From 

Malaysian perspectives as an important global exporter for wood-based products, 

the use of sawdust for lignocellulolytic enzymes production is a promising 

technology to add more value to the wood residues as well as providing more 

opportunities to achieve economic advancement for the industrial player.                  

iii. The cost of raw material contributes for about 40‒60 % of the total enzyme 

production cost.  A cheaper alternative substrate can be prospected as a way to 

reduce the production cost by using the raw untreated sawdust as sole substrate in 

the process of lignocellulolytic enzymes production.  The lack of chemical or/and 

physical pre-treatment step during the substrate preparation stage could further 

reduce the cost of overall enzyme production.  Furthermore, enzymes production 

in SSF can also facilitates a lower capital operating cost due to less water 

requirements and lower energy expenditures.  This study is regarded as the first 

to describe the use of untreated sawdust as a sole solid support in SSF for 

lignocellulolytic enzymes production.          
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iv. Investigation to find new isolates from habitats containing lignocellulosic 

substrates with the capability to produce lignocellulolytic enzymes are relatively 

simple strategies to obtain higher titre of enzymatic activities in facilitating the 

biomass degradation process.  Since termite gut stands as a rich source to 

prospect for diverse and efficient lignocellulose degrading microorganisms, the 

current study described the potential of termite gut microorganisms in producing 

lignocellulolytic enzymes and also degrading untreated sawdust under SSF 

condition.  

v. Although several studies have described the capability of termite gut 

microorganisms to exhibit lignocellulolytic activities, none has reported the 

effect when the microorganisms are co-cultured together.  As termite gut holds a 

dense population of microorganisms, co-culturing may provide an insight into 

types of interactions existed between the guts microbiota. 

vi. Knowledge on self-production of lignocellulolytic enzymes is essential as tailor-

made enzymatic mixtures that are optimized for the degradation of specific type 

of lignocellulosics remains as a strategic issue to be considered during the 

development of a sustainable biomass-biorefinery process.  The use of same 

material for enzyme production and degradation process could be a way to obtain 

optimal degradation results of that specific material.  Therefore, cultivation of 

microorganisms on sawdust was projected to produce lignocellulolytic enzymes 

with specific functionality to degrade sawdust and simultaneously promoting a 

greener technology as a way to manage woody residues in Malaysia. 

 

 

 

 

1.5 Thesis Organization 

 

 

This thesis is organized into ten chapters.  Chapter 2 covers relevant 

literatures on the availability of lignocellulosic biomass in Malaysia, structure of 

lignocellulose and the potential of sawdust to be used as raw material for production 

of high value products.  This chapter provides an overview of lignocellulose 

degradation via acidic and enzymatic approach, and the role played by 

lignocellulolytic enzymes (cellulases, xylanase and ligninases) in the enzymatic 

degradation process.  The source to prospect for lignocellulolytic microorganisms 
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and the plausibility of termite gut to serve as a good reservoir for isolation of such 

microorganisms were explained.  This chapter also deals with information on SmF 

and SSF as well as important SSF process variables related to the production of 

lignocellulolytic enzymes.  The positive role of microbial co-culture in 

lignocellulolytic enzymes production was also reviewed.  Literatures related to 

application of lignocellulolytic enzymes in various industries are briefly summarized. 

 

 

Chapter 3 describes the general experimental procedures performed in this 

research.  All common methods and procedures are placed in this chapter and be 

referred to in specific chapters, respectively.   

 

 

The results and discussions are divided into six main chapters. Chapter 4 

describes the isolation, screening and identification of lignocellulolytic 

microorganisms from Bulbitermes sp. termite gut.  Chapter 5 presents the 

development of microbial co-culture from the selected lignocellulolytic 

microorganisms in order to improve the enzymatic activities.  In Chapter 6, a 

thorough comparison was made between the lignocellulolytic enzymes activities 

produced by microbial co-culture with its respective single culture member.  The 

profile of lignocellulolytic activities together with its relation with 

exopolysaccharides production, N-acetyl-ᴅ-glucosamine and protein concentration 

was described.  Chapter 7 provided the evaluation of the effect of SSF operating 

parameters on lignocellulolytic enzymes activities. Chapter 8 presents the 

characteristics of lignocellulolytic enzymes produced by microbial co-culture in 

terms of optimal temperature and pH, temperature and pH stability.  Activity staining 

and molecular mass of lignocellulolytic enzymes on SDS-PAGE gel were 

determined.  The capability of single and microbial co-culture of termite gut’s 

microorganisms to degrade lignocellulose and the development of sawdust-based 

biorefinery strategy were presented in Chapter 9.  

 

 

The conclusions from this research are given in Chapter 10.  This chapter 

also states specific achievements, problems and some recommendations for future 

work. 
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10.2 Recommendations                                                                                                       

 

 

The utilization of sawdust as a raw material for the production of highly 

valuable lignocellulolytic enzymes and fermentable sugars will not only fetch 

valuable remuneration for wood-based industries, but also help mitigate 

environmental pollution.  In addition, through the study of microorganisms and their 

enzymatic activities, the mechanisms of efficient lignocellulose degradation in the 

termite gut may then could be elucidated, findings which have significant potential in 

biorefinery industries.  The defined microbial co-culture also stands as a useful 

technique to improve the titre of lignocellulolytic enzymes activities and therefore 

worthy of future study.  Some recommendations for future studies are outlined as 

follows: 

 

 

i. As sawdust was observed to contain high content of lignin, it is very 

interesting to extract the lignin through enzymatic or biological approach as 

this natural polymer can serve as a base for different materials application in 

the fields of bioplastics, (nano) composites and nanoparticles.       

 

 

ii. Since termite is one of the insects with a dense population of microorganisms 

living symbiotically inside its guts it is highly expected that the termite gut 

also resides microorganism that could influence the performance of the 

fermentation system, including hydrogen yield.  Biohydrogen is regarded as 

one of potentially advantageous alternative energy to minimise or even 

eliminate the dependability on fossil fuels.  Future research should consider 

prospecting and characterising hydrogen-producing microorganisms from the 

guts of termites.               

 

 

iii. To obtain the best production of enzymes, identification of optimal ratio 

between the two microorganisms in a co-cultivation is necessary.  The 

addition of termite extract into the medium or substrate can also be 

considered as a strategy to enhance the growth of microorganisms isolated 

from the termite gut.  It is also feasible to construct an efficient 
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lignocellulolytic enzymes producing‒co-culture for reducing sugars 

preparation from lignocellulosic biomass by adjusting the microbial 

constituent proportions in the consortium.   

 
   
iv. The present study was able to show that reducing sugars can be produced 

from the enzymatic degradation of sawdust.  Future studies should focus to 

investigate whether the reducing sugars can be further fermented by 

microorganisms to make ethanol from sawdust.     

 

 

v. Static tray fermentation is often used for large-scale production of enzymes, 

as it offers potential benefits over bioreactors, such as simple technique, trays 

can be stacked over one another in shelves and higher yields.  Solid-state tray 

fermentation could be possibly used to achieve higher yield of 

lignocellulolytic enzymes due to the capacity to put high substrate loading, 

large area for microorganism to grow and easy handling bioreactor as 

compared to immersion, packed-bed and rotating drum bioreactor.  A more 

comprehensive study is needed to provide information about the production 

of lignocellulolytic enzymes in solid-state tray fermentation employing co-

culture of selected microorganisms. 
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