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ABSTRACT

The dissertation reports the analytical approach and numerical simulation of a 

transport phenomenon which is governed by the advection-diffusion equation. The 

main objective is to solve this governing equation by both analytical and numerical 

methods. One-dimensional advection-diffusion equation is solved by using Laplace 

Transformation method. Then, the solution is interpreted in two-dimensional graph 

of solute mass concentration over the distance. The graph is plotted using a 

mathematical tool i.e. MATLAB software. On the other hand, the numerical 

simulation is performed by using Computational Fluid Dynamics (CFD) software, 

ANSYS Fluent. In ANSYS Fluent, the solver discretizes the transport equation using 

Finite Volume Method where the computational flow domain is divided into control 

volumes. The transport model is partly adapted based on a phenomenon of solute 

mass concentration distribution in mixture with air in the flow domain of the 

cylindrical silo during fumigation. Based on this applications, the initial and 

boundary conditions are defined similar to the ones in analytical approach. From this 

simulation, data is obtained in form of graphical distribution profile of solute mass 

which can be compared against the works from analytical approach, hence, the 

verification is achieved. The verification demonstrates the accuracy of numerical 

solution on this transport phenomena, thus, it can be used for various experimental 

applications.
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ABSTRAK

Disertasi ini melaporkan pendekatan analitik dan simulasi berangka terhadap 

fenomena angkutan yang diwakili oleh persamaan aliran-resapan. Objektif utama 

adalah untuk menyelesaikan persamaan ini dengan kedua-dua kaedah analitik dan 

berangka. Persamaan aliran-resapan berdimensi satu diselesaikan dengan 

menggunakan kaedah Transformasi Laplace. Kemudian, penyelesaian ditafsirkan 

dalam bentuk graf dua dimensi di mana kepekatan jisim bahan terlarut dicatat 

mengikut jarak. Graf diplot dengan menggunakan perisian MATLAB. Sebaliknya, 

simulasi berangka dilakukan dengan menggunakan perisian Pengiraan Dinamik 

Bendalir (CFD), iaitu ANSYS Fluent. Dalam ANSYS Fluent, teknik pendiskretan 

pada persamaan angkutan adalah menggunakan Kaedah Isipadu Terhingga di mana 

domain aliran pengiraan dibahagikan kepada isipadu terkawal. Model angkutan 

direka berdasarkan fenomena taburan kepekatan jisim bahan terlarut dalam campuran 

dengan udara di dalam domain aliran silo silinder semasa pengasapan. Berdasarkan 

aplikasi ini, syarat awal dan sempadan ditakrifkan sama seperti yang ditakrifkan di 

dalam pendekatan analitik. Dari simulasi ini, data diperolehi dalam bentuk grafik 

profil taburan jisim bahan terlarut di mana ianya boleh dibandingkan dengan kerja- 

kerja dari pendekatan analitik, dengan itu, pengesahan dicapai. Pengesahan 

menunjukkan ketepatan penyelesaian berangka pada fenomena angkutan, dengan itu, 

ia boleh digunakan untuk pelbagai aplikasi eksperimen.
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CHAPTER 1

INTRODUCTION

1.1 Background of the Study

In our daily life, there are so many phenomena occurring in and within the 

surrounding environment. These phenomena are taking place right in front of our eyes 

and in fact, within human body. From movement of surrounding fluids to blood flow 

inside the blood veins, these are among many examples of transport phenomena.

Through phenomena of breathing for example, air is inhaled into the lung. 

Within air, there is oxygen gas as one of the components. The molecules of oxygen 

are carried by air and moves around throughout the respiratory system until they reach 

the lung. Then, the oxygen molecules are carried by blood and moves around within 

the blood vessel system all the way through human body. This is happening right 

within human body in daily life, and indeed, every second of human life. This transport 

phenomena is known as advection and diffusion transport process (Quarteroni et al., 

2001). Advection denotes the oxygen gas is carried by air which is caused by pressure 

gradient when breathing (Beard and Bassingthwaighte, 2001). On the other hand, the
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natural tendency of oxygen molecules move around within air in human body system 

can be described by diffusion process (Beard and Bassingthwaighte, 2001).

Another example of transport phenomena also can be found in fabric 

manufacturing industry. In order to get the desired colour to dye the fabric, the 

concentrated colour dye is poured into a solvent. The mixing reaction between the 

liquid dye and the solvent involves diffusion process. At some point, the dye will stop 

spreading when its concentration is the same within the solvent or in other words, there 

is no more concentration gradient. These processes are illustrated in Figure 1.1.

\

Figure 1.1 Example of transport phenomena involving diffusion process.

There are many other example of real applications involving the advection and 

diffusion transport process. The ability to understand, predict and control such 

phenomena is essential. This ability offers substantial economic benefits and 

contributes for a better life to human being. Thus, through this work, an alternative 

approach of mathematical modelling is applied to study this advection and diffusion 

transport process.
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1.2 Statem ent of the Problem

In the subject of transport phenomena, the transport process is full of 

uncertainty when it comes to real life examples in many industrial applications such 

as reactor design, multiphase flows in furnaces and heat exchangers, design of better 

inkjet printers, and grain fumigation in the silo. However, the conventional engineering 

methods through field experiments to investigate these uncertainties involve a very 

high cost. Thus, an alternative way is being considered in wide range of research area. 

Mathematical modelling is one of such alternative to experimental method.

Among many applications, the transport phenomena of solute mass distribution 

is an example of advection-diffusion transport process which can be studied by 

mathematical modelling, either by analytical or numerical approach. Hence, this work 

of solute mass transport process analysis is initiated to contribute to the subject of the 

transport phenomena. The one-dimensional advection-diffusion equation of solute 

mass transport is considered to be solved by both analytical approach and numerical 

simulation.

1.3 Objectives of the Study

The following are list of objectives defined for this study:

i. To solve the one-dimensional advection-diffusion equation by analytical 

approach.
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ii. To perform numerical simulation for the one-dimensional advection-diffusion 

equation by using ANSYS Fluent software.

iii. To verify results of the numerical simulation against the analytical solution for 

one-dimensional problem of the advection-diffusion equation.

1.4 Scopes of the Study

The transport phenomena of phosphine gas particularly in grain fumigation 

application is considered to be studied. This transport process consists of both 

advection and diffusion reactions. Only movement of phosphine gas or its 

concentration (in terms of mass fraction) distribution in one-dimensional problem is 

considered. The transport model is partly adapted from grain fumigation application 

in the silo which it is assumed free from the grain and fully filled with air. This model 

is solved by both analytical and numerical works. The computational programming 

tool in MATLAB software is used to demonstrate the result of analytical work. On the 

other hand, ANSYS Fluent software is used to perform the numerical simulation. 

Then, the results from both works are compared for verification.

1.5 Significance of the Study

Advection and diffusion processes are indeed among interesting transport 

phenomena which occur in surrounding of human life. Fumigation application in a silo 

is among these significant phenomena in which there are many uncertainties about 

how the fumigant gas (i.e. phosphine gas) is distributed in air within the flow domain 

of silo. Thus, a study need to be developed in order to understand the behaviour of 

phosphine gas distribution throughout the silo. A mathematical modelling is applied
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as an alternative approach to conventional engineering method which is normally very 

costly. This study is expected to contribute to the answer of those uncertainties so that 

the outcomes can be useful in the wide range of related applications in various 

industries. In addition, this study is expected to encourage the academic community to 

explore further on the mathematical approach which can be applied in various 

phenomena of transport and fluid dynamics.

1.6 Dissertation Outline

This dissertation is structured in six chapters. Chapter 1 which consists of six 

sections, introduces the study frameworks. First section describes a brief background 

of this study. The second section explains the statement of problem, followed by a list 

of the objectives for this study. Scopes of the study are presented in the following 

section and significance of the study is described in the second last section. Lastly, in 

this section, the contents of this dissertation is briefly explained.

In Chapter 2, the literature review from previous and current researches are 

discussed. The advection-diffusion equation is introduced as a governing equation in 

transport phenomena and its principle of mass conservation and Fick’s Law will be 

discussed in details. Subsequently, a brief background of the numerical simulation is 

discussed.

The analytical approach of this study will be discussed in Chapter 3. It consists 

of the derivation of advection-diffusion equation and finding its analytical solution by 

defining the initial and boundary conditions based on the transport model of grain 

fumigation. Then, the numerical simulation is discussed for which the step by step of 

transport model simulation procedures including the geometry design of flow domain,
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meshing, setup and solution procedures of ANSYS Fluent software are shown in 

Chapter 4.

In Chapter 5, the results of study are presented, compared and the verification 

is achieved. The results include the findings from both analytical and numerical works 

for which the comparison between both approaches can be performed. Finally, 

together with the summary of this study, the conclusion and few possible suggestions 

for further study are recommended in Chapter 6.
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