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ABSTRACT

Optimization of spinning conditions plays a key role in the development of
high performance asymmetric hollow fiber membranes. However, from previous
studies, in solving these spinning condition optimization problems, they were
handled mostly by using an experimentation that varied one of the independent
spinning conditions and fixed the others. The common problem is the preparation of
hollow fiber membranes that cannot be performed effectively due to inappropriate
settings of the spinning conditions. Moreover, complexities in the spinning process
have increased where the interaction effects between the spinning conditions with the
presence of multiple objectives also affect the optimal spinning conditions. This is
one of the main reasons why very little work has been carried out to vary spinning
conditions simultaneously. Hence, in order to address these issues, this study focused
on a non-dominated sorting genetic algorithm-II (NSGA-II) methodology to
optimize the spinning conditions during the fabrication of polyethersulfone (PES)
ultrafiltration hollow fiber membranes for oily wastewater treatment to maximize
flux and rejection. Spinning conditions that were investigated were dope extrusion
rate (DER), air gap length (AGL), coagulation bath temperature (CBT), bore fluid
ratio (BFR), and post-treatment time (PT). First, the work was focused on predicting
the performance of hollow fiber membranes by considering the design of
experiments (DOE) and statistical regression technique as an important approach for
modeling flux and rejection. In terms of experiments, a response surface
methodology (RSM) and a central composite design (CCD) were used, whereby the
factorial part was a fractional factorial design with resolution V and overall, it
consisted of a combination of high levels and low levels, center points, as well as
axial points. Furthermore, the regression models were generated by employing the
Design Expert 6.0.5 software and they were found to be significant and valid. Then,
the regression models obtained were proposed as the objective functions of NSGA-II
to determine the optimal spinning conditions. The MATLAB software was used to
code and execute the NSGA-II. With that, a non-dominated solution set was obtained
and reported. It was discovered that the optimal spinning conditions occurred at a
DER of 2.20 ¢cm*min, AGL of 0 cm, CBT of 30 °C, BFR (NMP/H,0) of 0/100
wt.%, and PT of 6 hour. In addition, the membrane morphology under the influence
of different spinning conditions was investigated via a scanning electron microscope
(SEM). The proposed optimization method based on NSGA-II offered an effective
way to attain simple but robust solutions, thus providing an efficient production of
PES ultrafiltration hollow fiber membranes to be used in oily wastewater treatment.
Therefore, the optimization results contributed by NSGA-II can assist engineers and
researchers to make better spinning optimization decisions for the membrane
fabrication process.
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ABSTRAK

Pengoptimuman keadaan pintalan memainkan peranan penting dalam
pembangunan membran gentian geronggang asimetrik yang berprestasi tinggi.
Walaubagaimanapun, dari kajian lepas, kebanyakan masalah pengoptimuman
keadaan pintalan telah diselesaikan menggunakan uji kaji yang hanya mengubah satu
keadaan pintalan dan menetapkan keadaan yang lain. Masalah yang kerap berlaku
adalah proses pembuatan membran gentian geronggang tidak dapat dijalankan
dengan berkesan disebabkan tetapan keadaan pintalan yang kurang sesuai. Tambahan
pula, proses pintalan semakin kompleks, di mana interaksi antara keadaan pintalan
dengan kehadiran pelbagai objektif juga memberi kesan kepada pengoptimuman
keadaan pintalan. Ini merupakan salah satu sebab utama mengapa kurang
penyelidikan dilakukan untuk mengkaji keadaan pintalan secara serentak. Untuk
menangani isu ini, kajian ini menggunakan metodologi algoritma genetik tidak
terdominasi-II (NSGA-II) untuk mengoptimumkan keadaan pintalan dalam
pembuatan membran gentian geronggang ultrapenurasan polietersulfon (PES) untuk
rawatan air sisa berminyak bagi memaksimumkan fluk dan kadar buangan. Keadaan
pintalan yang dikaji adalah kadar penyemperitan dop (DER), ketinggian sela udara
(AGL), suhu takungan pengentalan (CBT), nisbah bendalir liang (BFR) dan masa
pasca-rawatan (PT). Pertama, kajian ini meramalkan prestasi membran gentian
geronggang menggunakan reka bentuk eksperimen (DOE) dan teknik regrasi statistik
bagi pemodelan fluk dan kadar buangan. Dari segi eksperimen, kaedah sambutan
berpusat (RSM) dan mod reka bentuk komposit pusat (CCD) digunakan, yang mana
bahagian faktoran adalah reka bentuk faktoran pecahan dengan resolusi V, dan
keseluruhannya, ia terdiri daripada gabungan tahap tinggi dan tahap rendah, titik
tengah dan mata paksi. Perisian Design Expert 6.0.5 telah menghasilkan model
regrasi dan model didapati penting dan sah. Kemudian, model regrasi yang
diperolehi dicadangkan sebagai fungsi objektif NSGA-II untuk menentukan keadaan
pintalan optimum. Perisian MATLAB digunakan untuk mengekod dan
melaksanakan NSGA-II. Satu set penyelesaian tidak dominasi telah diperoleh dan
dilaporkan. Didapati bahawa keadaan pintalan optimum berlaku pada DER 2.20
cm’/min, AGL 0 cm, CBT 30 °C, BFR (NMP/H,0) 0/100 wt.% dan PT 6 jam.
Tambahan pula, morfologi membran di bawah pengaruh keadaan berputar berbeza
disiasat menggunakan mikroskop elektron pengimbas (SEM). Cadangan kaedah
pengoptimuman berdasarkan NSGA-II menawarkan satu cara yang berkesan untuk
memperoleh penyelesaian yang mudah tetapi teguh bagi pembuatan membran
gentian geronggang ultrapenurasan PES yang digunakan dalam rawatan air sisa
berminyak secara cekap. NSGA-II memberi penyelesaian pengoptimuman yang
dapat membantu jurutera dan penyelidik membuat keputusan pengoptimuman
pintalan secara lebih baik dalam proses pembuatan membran.
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CHAPTER 1

INTRODUCTION

1.1 Background of the Research

At present, the global oil demand is rising due to the rapid development of
many industries, such as automobile and high fuel consumption for manufacturing
industries. As a consequence, massive volumes of oily wastewater have been
produced from the oil purifier industry (Agustin ez al., 2008; Ong et al., 2015). Since
oily wastewater consists of various hazardous hydrocarbon compositions, chemical
elements and heavy metals prior to discharging them to receiving water body, it
needs to be treated. However, biological, chemical, and physical treatments are
incapable of completely separating the oil molecules from water and the process

necessitates a huge area for operation (El-Naas et al., 2009).

Therefore, in order to overcome this issue, membrane separation has become
one of the most effective and demanding techniques used to fulfill demands in
numerous industrial processes based on separation (Gryta ef al., 2001). The ability of
this membrane technology in separating multi-component compositions into two or
more preferred outputs has allowed it to become a more popular choice, considering

its potentials and benefits. The advances made by Loeb and Sourirajan in 1960s in



high-flux asymmetric membranes have led to further development of membrane
separation techniques. Since then, this technology has attracted much attention and
support for research. In the last thirty years, membrane filtration was not
economically realistic, however, with the advanced technological revolutions of new
substances, procedures, and targets, membrane technology has been recognized as a
very successful and commercially attractive choice for separation and purification
system (Wiesner and Chellam, 1999). Thus, the membrane filtration technology
offers a promising avenue of study and innovation to provide better solutions for
sufficient supply of clear water in fulfilling human, environmental, and industrial
demands. Nevertheless, in the development of high performance membranes, several
aspects need to be considered, such as membrane process, membrane module, and
membrane material, in order to provide some basic understanding of the membrane

formation mechanism.

There are numerous membrane separation processes are available. One of the
membrane processes that have experienced rapid growth during the past few years is
ultrafiltration. Typically, ultrafiltration membranes are used for the separation of
very tiny suspended molecules and dissolved macromolecules from mixtures by
utilizing asymmetric membranes, which possess the size of pores ranging from 0.01
to 0.1 um. These membranes are normally conducted in a tangential stream mode
where the flow of feed solution that sweeps tangentially passes through an upstream
surface of membranes (Chaturvedi er al., 2001). Besides, ultrafiltration has the
widest diversity of application in numerous industries compared to other membranes
processes since it is a separation technology that possesses high efficiency and low

energy consumption (Nunes and Peinemann, 2006).

In addition, materials used for the membranes cover a broad range, from
organic polymeric to inorganic substances. In fact, many studies have been carried
out in the last few years to enhance membranes performance, as well as to search for
new membrane materials and techniques to fabricate high performance membranes.
Polymeric membranes have been well-established in most areas of industrial

applications due to the significant development by Loeb and Sourirajan in 1960s for



their finding to fabricate asymmetric membrane structures. In addition, membrane
separation processes using polymeric membranes have been quite marketable. In this
study, polyethersulfone (PES) had been chosen as the prime material (polymer)
because of its easier accessibility and processing, good characteristics of selectivity,
as well as permeability and strong mechanical properties (Li ef al., 2004). Beside,
PES is classified as an amorphous glassy and hydrophilic polymer in the sulfone
group and it is appropriate to be utilized in ultrafiltration separation process through
dry-wet inversion process. Also, the ultrafiltration membranes fabricated from PES
polymer displayed a broad range of pH and temperature resistance (Wang et al.,

2010).

The membrane module is another critical aspect to contemplate as the process
productivity and performance depend on it. Among membrane modules, hollow fiber
configuration is more favorable for industrial applications mainly due to its huge
membrane packing density, which permits it to have a high membrane area in a little
tool (Darvishmanesh ef al., 2011). In addition, in comparison to flat sheet and spiral
wound modules, the hollow fiber module is the preferred option for modules in
filtration process as it possesses several good benefits, which are greater productivity
due to strong mechanical properties, a very flexible module, and easy handling
(Khayet ef al., 2012; Qin and Chung, 1999). These excellent features cause hollow
fiber membranes irresistible from the industrial viewpoint. Moreover, at present,
hollow fiber membranes are extensively applied in many areas especially in
membrane separation areas, such as distillation, nanofiltration, reverse osmosis, and

many more.

On the other hand, phase inversion spinning technique has been universally
accepted as a standard technique for fabricating commercial membranes. It is also
referred to as a process where spinning solution is transfigured from liquid to solid
state. It is widely used and has become a favored technique to fabricate asymmetric
hollow fiber membranes. In short, an operation of phase inversion spinning
technique starts when a spinning solution is submerged and solidified in the

coagulation bath. Throughout the process, the solvent and non-solvent in the



spinning solution are exchanged. As a result, it produces a property structure of the
asymmetric membrane, which comprises of a dense top layer and porous sublayer
(Jung ef al., 2004). In this research, asymmetric PES ultrafiltration hollow fiber
membranes would be fabricated according to the dry-wet phase inversion spinning

technique.

In the current state-of-the-art, many researchers are involved in developing,
exploring, and expanding high performance membranes. Generally, membrane
performance can be classified in terms of two basic attributes, which are membrane
productivity (flux) and extent of separation (rejection of various feed components).
Flux and rejection are closely related to both the inner and outer skin layers. When
inner and outer surfaces possess an open structure, the pure water permeation flux
increases, whereas rejection decreases accordingly (Aminudin ef al, 2013). In
common, membranes with the highest flux and rejection are necessary and can be
classified as a high performance membrane, where normally, efforts to maximize one
attribute will decrease the other (Qin ef al., 2000; Sourirajan and Matsuura, 1985).
Hence, the challenge of this research is to maximize membrane performance by

enhancing the separation productivity through improving both flux and rejection.

1.2 Problem Statement

In the fabrication of hollow fiber membranes via dry-wet spinning technique,
spinning conditions will dominate the properties of hollow fiber membranes in terms
of morphology and separation performances. Besides, a lot of efforts have been made
to study the relationship between membrane characteristics and spinning parameters.
So far, numerous studies have reported varied effects of the spinning conditions like
composition of dope solution, concentration of dope solution, air gap length and
many more concerning the hollow fiber membranes performances. Nevertheless, not

much has been said regarding the simultaneous effect of the parameters (i.e. dope



extrusion rate, air gap length, coagulation bath temperature, bore fluid ratio and post-
treatment time), which are yet to be investigated on the performance of hollow fiber

membranes.

On top of that, the optimization of preparation settings of membranes
fabrication plays a key role in membranes performance (Yi ef al., 2010).
Determining an optimal solution by using an appropriate optimization method is
quite challenging for researchers. Moreover, the complexities in the spinning process
have increased where the interaction effects between the spinning conditions also
contribute to finding the optimal spinning conditions. It must be pointed out that
from previous studies in solving these spinning condition optimization problems,
they were handled mostly by using an experimentation that involved changing one of
the spinning conditions while maintaining the others at fixed levels. Moreover, from
previous studies, there were many researchers who used the parameter-by-parameter
optimization method to optimize the spinning conditions in fabricating hollow fiber
membranes and it was based on trial and error investigations. Furthermore, the
complexity of membrane preparation problems, as numerous parameters are
involved, is one of the main reasons why very little work has been done to vary all
these spinning parameters simultaneously (Chung et al., 2002; Xu and Qusay, 2004).
For instance, Chung ef al. (2002), Chung et al. (1998), Ismail et al. (2006), and Qin
et al. (2000) varied the dope extrusion rate factor only and fixed other factors in
fabricating PES ultrafiltration hollow fiber membranes. Meanwhile, Chung and Hu
(1997), Kapantaidakis ef al. (2002), Khayet (2003), and Qin ef al. (2001) varied the
air gap length only and fixed other factors during membrane fabrication. In addition,
there were several researchers who varied two and more factors of these spinning
conditions by using the parameter-by-parameter optimization technique. Apparently,
the drawbacks of this classical approach are that it needs a lot of experimental work
and time, does not consider any interaction between the spinning conditions during
the spinning process, and displays lower capability in optimization. Thus, it takes
tremendous effort to obtain the best optimal spinning conditions. Even though
traditional optimization techniques have the ability of considering several parameters
at the same time, they still fail to acquire the relationship equation that links the

varied parameters and the outcomes, and besides, it is not easy to discover the



optimal parameters combination and optimal response value in the entire area.
Furthermore, one of the common problems is that the hollow fiber membrane
spinning process cannot be performed effectively due to the inappropriate settings of
the spinning conditions (Khayet er al, 2012). In general, most researchers have
sought for the most appropriate settings of spinning process using a small number of
experiments by keeping all conditions fixed and only varying one condition in a

small range as it is more practical to be performed (Chung ez al., 2000).

These shortcomings of the classical method can be solved by using the
response surface methodology (RSM), in which all parameters are varied
simultaneously by using a set of experimental trials. By applying RSM, many
spinning condition parameters can be investigated at the same time and the number
of experimental trials can be minimized in comparison to the optimization technique
based on trial and error attempts (Khayet ef al., 2012). In other words, RSM offers
more benefits than the familiar conventional optimization method. RSM is faster and
reliable, more informative, as well as involves a small number of experiments that
save time and operation costs. Nevertheless, the spinning condition optimization
problems are indeed challenging and the complexity further increases with the

presence of multiple objectives.

From the above discussion, these problems are inherently multi-faceted and
involve spinning conditions at various levels, which necessitate multiple objectives
to be satistied. The membranes that possess the highest flux and rejection are
classified as high performances membranes (Aminudin ef al., 2013; Sourirajan and
Matsuura, 1985). Normally, efforts to maximize the flux will have to decrease the
rejection. Also, this problem could be categorized as a non-deterministic polynomial
(NP)-hard problem. Therefore, multi-objective optimization is one such tool that can
come in handy to solve these spinning optimization problems. Hence, a non-
dominated sorting genetic algorithm-1I (NSGA-II) approach is proposed for solving
the spinning problem. NSGA-II is a commonly used global search algorithm due to
its outstanding global search ability (Li ef al., 2015). Fundamental understanding in

optimizing spinning conditions in membrane fabrication is still in its early stage and



not many researchers have reported the application of NSGA-II in optimizing
spinning conditions in the PES ultrafiltration hollow fiber membrane fabrication.
Thus, a crucial task in exploiting and optimizing novel, robust, and high performance
membranes is thus to carry out further dynamic search approaches that quickly focus
on the most potential optimal spots within the parameter space. As a result, it
increases the possibility of discovering the membrane, which possesses the best

separation performance (Vandezande et al., 2009).

Thus, the present study in spinning conditions optimization is required to be
undertaken in two stages: (1) modeling of input-output and in-process spinning
parameter relationship, and (ii) determination of optimal spinning conditions. The
spinning conditions considered dominantly affecting the preparation of PES
ultrafiltration hollow fiber membranes are the dope extrusion rate (DER), air gap
length (AGL), coagulation bath temperature (CBT), bore fluid ratio (BFR) and post-
treatment time (PT). Particularly, design of experiments (DOE) (including central
composite design (CCD) and response surface methodology (RSM)) integrated with
the NSGA-II methodology are used for these purposes in the development of PES
ultrafiltration hollow fiber membranes. Regression models are constructed based on
DOE to model the spinning conditions during the fabrication of these membranes via
phase inversion spinning technique. Then, these models are expressed as a fitness
function of NSGA-II with the objective of maximizing the membrane performance in
terms of flux and rejection. The optimization of spinning condition parameters that

affect the membrane performance will be explored by using NSGA-IL



1.3 Research Questions

This research is primary to seek answers for these two major questions.

1) Which parameters or factors affect membrane performance in terms of
flux and rejection?
(11)  What are the optimal spinning conditions for PES ultrafiltration

hollow fiber membranes fabrication?

1.4  Objective of the Research

The objectives of this research are to produce both high flux and rejection of
PES ultrafiltration hollow fiber membranes by optimizing the spinning conditions in
membrane fabrication. Based on the problems and research questions discussed in

the previous sections, the objectives of this study are given as follows:

1) To determine the significant spinning parameters and their
relationship using DOE. Additionally, the microstructures of PES
ultrafiltration hollow fiber membranes are also investigated by using a
scanning electron microscope (SEM).

(1)  To optimize the spinning conditions used in the fabrication of PES

ultrafiltration hollow fiber membranes by using the NSGA-II method.



1.5 Scope of the Research

To achieve the objectives of this research, some guidelines should be
followed. Several main scopes for this study have been recognized as guidelines in
order to optimize the spinning conditions in membrane fabrication as well as to

produce high performance PES ultrafiltration hollow fiber membranes.

(1) The spinning process conditions investigated cover those from the
dope formulation stage until the post-treatment process.

(1)  PES as a polymeric material is used in the dope formulation.

(i) Flux and rejection rate are used to characterize the membrane
performance.

(iv)  Synthesized oily wastewater is used to characterize the separation
performance.

(v) DOE is used to develop the predicted regression models to show the
relationships between the spinning conditions and membrane
performance.

(vi)  NSGA-II is used to find the optimal spinning conditions.

(vi)) The MATLAB version 7.9.0529 (R2009b) is used to implement the
NSGA-II optimization process.

1.6 Significance of the Research

The recent development of PES ultrafiltration hollow fiber membranes via
NSGA-II has highlighted several advantages from this study. Most notably, it helps
to provide an efficient spinning process, which makes the fabrication of membranes
to become more effective and productive, as well as requiring small investment,

energy consumption, and operating cost. The process also becomes an economical
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approach and yields a good quality product, while relatively the PES ultrafiltration
hollow fiber membranes with desired properties can be obtained. Thus, the
knowledge acquired from this study will boost the future researches on membranes
development, especially in the spinning process, to further provide better
understanding in treating oily wastewater with a combination of various spinning

conditions.

Removal of oily wastewater using the ultrafiltration process is very much
crucial to contribute towards the availability of sustainable water supply system. The
membrane separation is a good performance separation where the separation is based
on a size of molecular, with low energy consumption, thus requiring small operating
cost compared to the traditional techniques. Since PES is the most promising
membrane to treat oily wastewater, this study developed the PES ultrafiltration
hollow fiber membranes, while the membrane performances were evaluated in terms
of flux and rejection. The impact of this study is important since the PES
ultrafiltration hollow fiber membranes fabricated offers prospect of higher
productivity and selectivity, as well as prominent boost in membrane performance.
Indirectly, this research can help manufacturers to produce high performance
membranes, which can contribute to provide fresh water resources and good quality

treated water in regions around the world.

Lastly, the findings obtained from this research had been used to determine
the optimal setting of the spinning process during membrane fabrication by
presenting a new practical NSGA-II methodology for optimization of the spinning
process. The emphasis of this study is to offer engineers or decision makers a
preferred solution within a short period of time. Requirements and specifications
from them can help and lead to choose the best solution. If they desire higher flux or
any specific rejections, the appropriate combinations of spinning conditions can be
selected accordingly. Thus, NSGA-II stimulates to enhance the production rate of

membranes, besides, reducing spinning operation time that saves a lot of costs.
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1.7 Structure of the Thesis

This thesis consists of seven chapters. The first chapter introduces the
technology of membranes especially in membrane fabrication and its importance in
separation and purification systems. It also includes the problem statement, research
questions, objectives, scope and significance of the study. Chapter 2 gives a
comprehensive overview of the studies conducted on membranes in many aspects
especially in membrane manufacturing systems. It reviews the various issues of the
usage of NSGA-II for optimizing the spinning conditions in membranes fabrication
and its applications. Additionally, the notion and procedures of NSGA-II for solving
problems are discussed. Chapter 3 presents the materials and methods as well as
detailed procedures of each experiment conducted. Chapter 4 explains the
development of the spinning regression models based on the DOE and statistical
regression technique. Chapter 5 discusses the optimization process in solving the
models using NSGA-II. Chapter 6 analyzes the results of the experimental studies.
The last chapter gathers the conclusions of this study and the recommendations for

future work.
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(ACO), simulated annealing (SA), etc.
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