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ABSTRACT

Due to the urbanization multi-story building with underground story for 

parking space and storage are very common in practice. Now a day, seismic energy 

dissipating devices are being used for various types of structures and located in 

basements which are difficult to maintain. The main objective is to evaluate the 

effectiveness of horizontal dampers in the ground floor level of the multi-story 

building above basement. Among different types of dampers, visco-elastic (VE) 

dampers are used for this numerical study. Comparing with other types of passive 

energy dissipating devices, visco-elastic (VE) dampers are considered most suitable. 

For the better understanding of the effectiveness of horizontal dampers, stiff 

foundation system is considered thus soil-structure interaction is omitted. In this 

numerical study, seismic response of different hypothetical structures analyzed 

having different underground stories and horizontal dampers only in the ground 

level. Modeling and analysis of the structures and installation of the dampers are 

done by using finite element modeling software (ETABS). Time history analysis was 

used to simulate the response of the structures. Sabah earthquake (05/June/2015) 

with the PGA of 0.126g was used for the time history analysis. Different dynamics 

parameters such as natural time period, displacement, base shear and inter-story drift 

were evaluated. Changes in the results among the structures demonstrated the 

efficiency of horizontal dampers. Optimum locations of the horizontal dampers were 

also revealed in this study in the basis of the analysis results.
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ABSTRAK

Oleh kerana pembandaran bangunan berbilang tingkat dengan cerita bawah 
tanah untuk tempat letak kereta dan penyimpanan yang sangat biasa dalam amalan. 
Sekarang sehari, tenaga melesapkan seismik peranti yang digunakan untuk pelbagai 
jenis struktur dan terletak di bawah tanah yang sukar untuk mengekalkan. Objektif 
utama adalah untuk menilai keberkesanan peredam mendatar dalam peringkat tingkat 
bawah bangunan berbilang tingkat di atas tingkat bawah tanah. Antara jenis peredam, 
likat-kenyal (VE) peredam digunakan untuk kajian berangka ini. Dibandingkan 
dengan lain-lain jenis peranti dissipating tenaga pasif, likat-kenyal (VE) peredam 
dianggap paling sesuai. Untuk pemahaman yang lebih baik terhadap keberkesanan 
peredam mendatar, sistem asas sengit di anggap dengan itu tanah-struktur interaksi 
ditinggalkan. Dalam kajian berangka ini, tindak balas seismik struktur andaian yang 
berbeza dianalisis mempunyai cerita bawah tanah yang berbeza dan peredam 
mendatar sahaja di peringkat akar umbi. Pemodelan dan analisis struktur dan 
pemasangan Peredam dilakukan dengan menggunakan terhingga perisian pemodelan 
elemen (ETABS). Masa analisis sejarah telah digunakan untuk mensimulasikan 
sambutan struktur. gempa bumi Sabah (05 / Jun / 2015) dengan PGA of 0.126g telah 
digunakan untuk analisis sejarah masa. dinamik yang berbeza parameter seperti 
tempoh semula jadi masa, anjakan, asas ricih dan antara cerita drift telah dinilai. 
Perubahan dalam keputusan antara struktur menunjukkan kecekapan peredam 
mendatar. lokasi optimum peredam mendatar juga didedahkan dalam kajian ini 
dalam asas keputusan analisis.
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CHAPTER 1

INTRODUCTION

1.1 General

The fundamental goals of any structural design are safety, serviceability and 

economy. Achieving these goals for design in seismic region is especially important 

and difficult to achieve. Uncertainty and unpredictability of when, where and how an 

earthquake event will strike a community increases the overall difficulty. In addition, 

lack of understanding and ability to estimate the performance of constructed facilities 

makes it difficult to achieve the above mentioned goals. In some cases, especially 

under strong earthquake excitations, these can cause the structural damage or even 

collapse of structure. For the structures that have high inherent or natural damping, 

the likelihood of damage will be decreased. However, for structures subjected to 

strong vibrations, the inherent damping in the structure is not sufficient to mitigate 

the structural response. In many situations, supplemental damping devices may be 

used to control the response of structure.

1.2 Background of the problem

Among the natural phenomenon that human kinds worried are about the 

earthquakes. Location and time of occurrence since earthquakes are unpredictable. 

During a major earthquake, a large amount of input energy due to earthquake 

is displacing the building. The performance of a structure during an earthquake 

depends on its energy absorption and dissipation capacities. The manner in which
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earthquake energy is consumed in a structure determines by the level of damage. The 

building codes recognize that it is economically not feasible to reconcile this energy 

within the elastic capacity of the structural systems.

The most feared effects of earthquake are collapse of structures especially tall 

building structures due to high displacement between stories. One of the key 

solutions with this explanation is the reduction of structural response by increasing 

the dissipation of input energy due to earthquake. In the other words, if the amount of 

energy getting into the structure can be controlled and a major portion of the energy 

can be dissipated mechanically independently of primary structure, the seismic 

response of the structure and damage control potential can be considerably mitigate. 

These objectives can be delivered by adopting new techniques of base isolation and 

energy dissipation devices in the structural system. That’s why damper devices are 

the most popular instruments for increasing the dissipation of input energy.

The scale of designing in conventional building codes is to design structures 

to resist moderate earthquakes without significant damage and avoid collapse during 

major earthquakes. The primary emphasis is on life safety. The reliance for survival 

is placed on ductility to dissipate energy during inelastic deformations causing 

bending, twisting and cracking. Recent earthquakes have clearly demonstrated that 

conventional construction is unavoidable in technologically advanced countries, is 

not unaffected to destruction.

Finite Element Method (FFM) is a numerical method that can be used to 

solve different kinds of engineering problems in the stable, transient, linear or 

nonlinear cases (Bathe, 1996). Among finite element method software’s, ETABS 

is known as one of the most practicable software in industry and university 

researches. It is used for dynamic analysis such as earthquake and water wave 

loading on structures.
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1.3 Statement of the problem

In seismic structures retrofitting, one of the lateral force reduction caused by 

the earthquake is by the use of dampers. Damping increasing reduces structural 

response (acceleration, velocity and displacement). The retrofitting of dampers has 

become very popular in the recent years due to its ease of placements.

Since the motion of earthquakes is random at the point where vibration enter 

in the structural system, the principle of vibration isolation are being used to protect a 

building (i.e., it is decoupled from the horizontal components of the earthquake 

ground motion by rubber bearings between the building and its foundation).

The principle behind isolation is to change the natural period of the structure, 

substantially decouple a structure from the ground motion input and therefore reduce 

the resulting inertia force that the structure must resist. This is done by the insertion 

of energy absorbing material between the substructures and superstructures, which 

will reduce the amount of seismic forces transmitted to above system.

But, the method of structural isolation is very expensive and difficult to carry 

out (Di Sarno et al., 2005). Instead of using base isolation in the foundation, 

horizontal dampers can be an alternative solution, which are easy to install and 

maintain.

1.4 Objectives of the study

The objectives of this study can be listed as follows:

1. To model tall building using finite element modeling.

2. To evaluate seismic performance of typical tall building due to earthquake 

excitations.



3. Studying the seismic behavior tall building structure by horizontal 

damper using time history analysis.

1.5 Scope of the study

The scopes of study are:

a) Earthquake characteristics according to Eurocode 8.

b) Response of tall building structures to earthquakes through the numerical 
method of ETABS software.

c) Horizontal damper characteristics through the analysis of forty storey 
buildings.

d) Evaluation of response of tall building structures equipped by horizontal 

damper for the building with underground stories.

4

1.6 Organization of the Study

The preparing of the objectives and scopes of study are explained as below;

Stage 1: Explaining of the project on the objectives and scopes of the study

It is to verify the feasibility of the study outcomes and planning of

methodology for efficient thesis of input and output.
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Stage 2: Literatures, collecting data and modeling of structures

Initial study shall be done to understand the behavior of the tall building 

structure and best solution for retrofitting. Knowing the performance of the tall 

building structure subjected to earthquake loading if is essential to assume the 

structure behave according to literature findings. Obtaining the information of model 

before head and spearhead the modeling technique is part of the requirement in 

successful overall analysis.

Stage 3: Verification of retrofitting devices and modeling

The purpose of this stage is to identify appropriate and application of 

retrofitting devices, which are the horizontal dampers devices. In addition, the 

theoretical background of the frame equipped by damper devices is also 

included to verify the concept of work on the device. Material properties and 

analysis methods have been determined to obtain correct mode shapes. The structure 

with and without damper has been modeled by ETABS software to verify the 

response of structure with appropriate earthquake signals. In other words, the 

models are proposed with (damped) and without (un-damped) horizontal damper for 

comparison purposes.

Stage 4: Vulnerability assessment of modeling and response analysis

The response spectrums and Time histories analysis have been done to find 

responses of the two models.

Stage 5: Discussion and conclusion

Summary of the project according to the different analysis methods and 

comments on the further improvement to the study are to be enumerated.
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A bstract: Buildings in the city often have underground storage space for 

parking and building equipments. While seismic damper device devices usually are 

also placed here, making maintenance difficult. The main objective of this study was 

to evaluate the effectiveness of horizontal dampers at its position relative to at the 

bottom end of column basement. Among the various types of seismic dampers, type 

of viscous elastics was selected for this numerical study because of its simplicity. For 

better understanding of the study, a horizontal damper absorber is considered rigidly 

supported and is not affected by the act of soil and foundation of the building. In this 

numerical study, five prototype buildings have been analyzed by the different height 

position of its horizontal dampers. Modeling and analysis of the prototype buildings 

was done by using finite element software, ETABS. An earthquake time history 

analysis (05 / Jun / 2015) with the PGA of 0.126g of Sabah, Malaysia has been used 

to simulate the five building the prototype against seismic forces. Analysis produces 

dynamic characteristics such as natural period, displacement between floors, and its 

base shear displacement on the foundation. Comparison of the efficiency of the 

prototype shows the real values of horizontal damper installation vertical floor levels.

Keywords: Visco-elastic damper; Horizontal damper; Sabah earthquake; 

Time history analysis
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1 Introduction

Due to the high increasing rate of population and some restrictions on 

construction in big cities, the basement floors are commonly exist in multi-story 

buildings. Today, a large number of residential and commercial buildings in the 

urban areas include one or several basement floors. The effects of basement floors 

having dampers on seismic behavior have not been studied very much. Failures of 

these types of buildings during earthquake show the importance of energy dissipating 

devices for these buildings. An attempt has been made to find the variation in natural 

period, story displacement, base shear and drift of structure by incorporating energy 

dissipating devices as compared between different models.

Recently, passive dampers are being used for the retrofitting of the existing 

structures and the design purpose for the new structures. Base isolation is being used 

as an effective way to mitigate earthquake damages. These isolators needed to satisfy 

the design requirements by laboratory tests. Performance of these isolators may be 

affected by over the time and seismic occurrence in the mean time also can affect 

their performance. Thus it is considered the important to check the performance of 

the isolators on a regular basis of several years or after the occurrence of an 

earthquake (1). This system decouples the building from the foundation and costly 

also.

Today it is possible to use energy dissipating viscous dampers without 

isolating the structure. Although both two systems have the same objective in 

reducing earthquake damages but the techniques of implementation are different. 

Dampers can be used throughout the structure. Up to 30% or even more damping is 

possible by viscous dampers. These dampers can be used for new and existing 

structures (2).

For the building with several basements, viscous dampers can be placed 

perpendicularly along the height of the structures above basement level. So that it 

will be easy to install and maintain. These will add energy dissipation to the lateral 

system of the building.
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In this research the effectiveness of horizontal dampers are studied for the 

buildings with several stories of basements. Among different types of dampers, 

visco- elastic dampers which are considered the most suitable energy device are used 

for this study.

2 Literature Review

Today in big cities building with underground stories are becoming very 

common. The lateral forces due to earthquake are not considered much during the 

design of these buildings. So, these basement structures are being designed by 

considering only gravity loads. Seismic effects on the basement members are 

required studying more (3). Moreover, building systems type and configuration have 

much influence on dynamic behavior of a structure due to earthquake excitations

(4). Over the years, considerable achievement is done in improving seismic 

performance of the structures (5). Although much unknown also remaining in this 

field to ensure the safety the structures.

Many advances became possible due to application of Finite Element 

Analysis (FEA). Performances of real structures due to earthquake excitations are 

also being predicted. Although FEA is playing very important role in earthquake 

analysis but its limitations are also recognized. Thus a successful integration of 

analysis and design are needed.

Additional vibration stresses due to earthquake excitations are unwanted for 

the structures. By appropriate seismic design these should be eliminated or reduced 

as much as possible. Analysis of structures by installing different damping systems 

are increasing recently as the current trend of constructing high-rise buildings and 

tendency to make the structures safe against earthquake excitations (6).

Energy absorbing mechanical devices is being used to reduce earthquake 

effects and is generally located within the structure. Various research results showed 

using of mechanical energy absorbing devices are quite promising. During an 

earthquake phenomenon, these installed devices absorb energy and reduce the
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harmful effects to the structure. These devices generally do not support from the 

structure and can be removed anytime keeping the structure undamaged.

Many researches were also carried out to mitigate the earthquake effect on the 

structures. Viti et al. (7) reduced the maximum acceleration of a structure by 

implementing damping devices to control seismic responses. A numerical study of a 

7-story building was conducted by Ribakov et al. (8) by using dampers under 

different seismic excitations. Up to 70% reduction of peak displacement was 

obtained comparing with the un-damped structure. Madsen et al. (9) concentrated on 

the use of dampers for the tall buildings. The study was conducted by using Visco

elastic dampers placed within shear wall of the structure. The results were more 

effective for the lower stories of the structure. The effect of hysteretic-viscous 

dampers was analyzed on high-rise buildings by Hisano et al. (10). Bhattacharya and 

Dutta (11) showed the significance of fundamental natural period in dynamic 

behavior of the low-rise buildings. The soil-structure interaction effect on different 

dynamic parameters such as base shear, moment and inter-story drift for the 

buildings with underground stories was studied by Saad et al. (12). Pong et al. (13) 

did a study by using different building codes on seismic provisions and other design 

parameters.

2.1 Energy dissipating devices

Recently energy dissipation technology has modified usual seismic design. 

These are greatly improving the seismic performance of the structures and reducing 

structural seismic responses (14). These energy absorbing devices may be active or 

passive in nature. Active controls do not found much application due to its high cost 

and large instrumentation set up. This system requires a power supply to operate 

hence undependable if the power supply disrupted during seismic events. Thus active 

dampers are preferable to wind induced loading on tall buildings rather than 

controlling the seismic effects.

On the other hand, passive control systems for example, base isolation, 

dampers, bracing systems etc, are found to be easy to install and cost effective as
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compared to first one. Among different types of passive dampers, metallic dampers, 

viscous dampers, visco-elastic dampers, and friction dampers are common in use. 

These systems are emerged as special devices which can be incorporated throughout 

a structure to absorb seismic induced energy. Use of passive dampers is now a day 

becoming cost effective solution for improve seismic performance of existing as well 

as new buildings. They reduce the seismic responses on the critical members of a 

structure. Thus demand of energy dissipation on main structural members is largely 

reduced and probability of structural damage also reduced. These absorbers can be 

replaced leaving the structure undamaged after the earthquakes as these do not carry 

any structural loads (15). Thus structural and non- structural damages can be 

significantly reduced by using passive dampers which will reduce inelastic demand 

for structural members (16).

Again, on the basis of energy dissipation mechanism, dissipation devices can 

be categorized into two types; velocity dependent damper and displacement 

correlation damper (17). Visco-elastic damper and viscous damper are velocity 

dependent damper. Metal damper and friction damper is displacement correlation 

damper (18).

2.2 Passive energy dissipation devices

Kelly et al. (19) began the conceptual and experimental study to absorb 

seismic energy by using passive energy dissipating devices. Among different types 

of passive energy dissipation devices, base isolation are being used a lot in 

earthquake prone areas. The mechanism behind isolation is natural period of a 

structure got changed and it decouples the structure from ground. For this purpose, 

energy absorbing materials are inserted between the superstructure and substructure. 

As a result the amounts of transmitted seismic forces are reduced (20). According to 

Di Sarno et al. (21), base isolation is quite useful but tough to carry out and 

expensive also.

Moreover, there are various types of passive dampers which are being used 

for high-rise building and commercially available. These can be produced with
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different properties and produce a wide variety of results. Visco-elastic dampers 

which are the most popular passive dampers can be used as an alternative of base 

isolation.

2.3 Visco-elastic dampers

Visco-elastic dampers are considered as the earliest passive dampers that 

successfully used in structures (22). These are the most promising and have been 

used in many structures all over the world. These can absorb large amount of energy 

induced from both wind and earthquake. Many numerical and experimental studies 

reported reduction of seismic induced structural vibrations by installing visco-elastic 

dampers (23-25). These dampers are consisting of visco-elastic materials which 

bonded with steel plates. Typical view of a visco-elastic damper is shown in Figure

1. Energy is dissipated by shear deformation of visco-elastic materials (26). 

Generally, even small inter-deformations under dynamic loads can amplify damper 

displacement and dramatically improve the efficiency of viscous dampers (8, 27, 28). 

From the previous studies, it is clear that visco-elastic dampers are treated as an ideal 

energy dissipating device because of the efficient energy dissipations, high reliability 

and cost effectiveness against dynamic loads. Therefore, visco-elastic dampers can 

be good alternatives to base isolation in new buildings or existing buildings (29).

Figure 1. Typical view of a visco-elastic damper

The investigation of the energy dissipating mechanism in the structures 

during earthquakes is important for upgrading existing structures and seismic 

resistant design. Thus research on energy dissipating mechanism is greater than ever. 

In this study, visco-elastic dampers are used as horizontal dampers considering the 

buildings with multiple underground stories and dampers are installed only above the 

basement level due to the ease of practical installation.
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3 Methodology

Methods of modeling and applying the seismic load are important in order to 

understand the seismic behavior of the structures (30). This study was carried out by 

using time history analysis using the finite element modeling software (ETABS 

software). For the modeling purpose frame elements were used for columns and 

beams and shell element was used for slabs. Dampers were modeled by using link 

property. 3D hypothetical models were used for the understanding the seismic 

behavior of horizontally damped building. As the main objective of this study is to 

investigate the effectiveness of horizontal dampers in the buildings with multiple 

basements, hence soil-structure interaction is not considered in the study.

3.1 Modal description

A hypothetical 40 story moment resisting residential building was designed 

without any basement with plan dimension 34 m by 28 m (Case A) as shown in 

Figure 2. The total height of the building was 120m and typical floor to floor height

is 3 m. The building is modeled symmetrically to avoid torsion effects. Column size

is kept similar for the whole building. Concrete unit weight is considered as 24.0 

KN/m3. The inherent damping of the frame is considered 5%. The frames have been 

modeled as rigid frames. All restrains that have been modeled are assumed to be 

fixed. Dead and live loads were assigned to the shell elements of the structure 

according to Eurocode 1 EN1991-1-1:2002. The compressible soil condition was not 

considered and the entire building was supported by fixed foundation.
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Figure 2. Plan view and elevation of the hypothetical building

Again, four buildings were modeled having a different basements and 

horizontal dampers at the ground floor level as Cases are B, C, D and E. Case B, C, 

D and E had 5th, 10th, 15th and 20th level of dampers respectively as shown in 

Figure 3. These 4 buildings had similar 40 stories height.

Case A Case B Case C Case D Case E

Figure 3. Buildings with different cases

3.2 Installation of dampers

Viscous Elastic Damper consists of steel plates and high damping elastic 

rubber, it could be configure into different forms according to the structure 

requirements. This kind of rubber can convert vibration energy to heat energy 

through shear deformation. From this reason, the viscous elastic dampers can 

effective control structural vibrations resulting from wind, earthquake, traffic and 

human activities.
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Viscous damping can be implemented in many ways in a finite element 

analysis depending on the software. When damping is small, the damped natural 

frequency is almost the same as the un-damped natural frequency. The Holmes 

consulting produces various visco elastic dampers having different damping 

properties. One of the dampers having the below properties are considered for this 

study: the stiffness, K of 20000 KN/m and the damping coefficient C of 10000 

KNs/m (31).

A total of 22 dampers were installed in each model having the above 

mentioned properties for each damper. Figure 4 shows the dampers that were 

modeled for the analysis.

(a) 2D view (b) 3D view

Figure 4. (a) 2D view and (b) 3D view of horizontal dampers modeling at

ground floor level

3.3 Input of earthquake data

Sabah earthquake (05/June/2015) with the PGA of 0.126g was considered for 

this study. Only ground acceleration of X-direction is taken into account. The 

earthquake data was inputted as an electronic file having unit in mm/sec/sec. This 

type of data is common to use research purposes. In respect to that, the data is widely 

used in this study to analyze for the modeled structures under earthquake loading. 

5% damping is considered for this study. Figure 5 shows acceleration of Sabah 

earthquake that was used in this study.
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Figure 5. Sabah earthquake acceleration vs time 

3.4 Time history analysis in ETABS

Time-history analysis is most suitable analysis method for analyzing the 

structures under specific earthquake record (32). For a specific earthquake data, 

structural behavior can be studied for every increment of time. This type of analysis 

can be used to study for any previously recorded ground motion (33). The specific 

earthquake record is inputted at the base of the structure during the analysis (34). The 

dynamic behavior the structure can be computed for each moment of the earthquake 

incident.

In ETABS, there is a defining option for time history function. Using that 

option, time history functions can be created easily. In this research case, only one 

time history cases is defined by user -  0.126g in NS (north-south).

Among different types of Time history analysis, linear modal is used to define 

the load cases with respect to time history function. In addition, calculation and 

choosing the scale factors to get the earthquake effect on the structure is also 

important. For this study, the scale factor value of g is (9.81 m/secA2) which is the 

unit of the acceleration. Another one important thing is to choose the number of 

output time steps and output time steps size. In this matter, Sabah earthquake signal 

is about 18 seconds and time step size is 0.005 second. Therefore, number of time 

steps divided by output time step size will give the detailed response of the 

structure in every 0.005 second. In mathematical expression,
18 (time taken by Sabah EQ)

0.005(Time step of Sabah EQ)

output time step size.

=  3600 (for number of output time steps) and 0.005 for
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4 Results and Findings

A parametric study is done to evaluate the effectiveness of horizontal 

dampers in the structure due to earthquake excitation. The design parameters such as 

fundamental period, story displacement, top story displacement, base shear and inter

story drift are studied that were obtained from the analysis results. The results are 

showing the changes of different parameters for different analyzed cases.

4.1 Natural Time Period

The natural period is most important dynamic parameter to understand the 

behavior of a structure. Generally first few fundamental periods of any structure 

determine the dynamic behavior of that structure. The analyses were resulting a 

fundamental time periods at the first mode of Case A, B, C, D and E as 4.945sec, 

4.721sec, 4.205sec, 3.613sec and 2.991sec respectively. . Maximum time period is 

observed for Case A which is about 40% more than case E. Figure 6 shows first 3 

fundamental periods for different modeled buildings. With reference to figure there 

is huge change in time period for different cases. When the structures were modeled 

using dampers, time periods were decreased. The natural periods were decreasing as 

the numbers of basements were increasing indicating the ductile action. Thus it is 

clear that the natural period of structures decreased due to horizontal dampers effect. 

There was about 5%-40% of decrement in natural time period from first mode. 

According to the results, the time periods of mode shapes of damped structures were 

less than un-damped structure, it was due to increase in stiffness of damped 

structures.
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Figure 6. Natural periods for first 3 modes

4.2 Story Displacement

Story displacements for all structures due to Earthquake are shown in Figure

7. With reference to the figure, a lot of difference is observed in the displacements 

profile of different structures. Maximum top story displacement was observed for 

Case A. In Case A, story displacement is seen to increase linearly along the story 

height comparing the others. But for the other cases more displacements were 

observed before reaching to the mid height although final displacements were less 

than Case A.

Maximum displacements for top floor of each building are shown in Table 1. 

It is evident that the maximum displacement is for the building modeled without 

damper. There were 14%, 19%, 5% and 19% decrease in top story displacement for 

Case B, Case C, Case D and Case E respectively. Thus horizontal dampers have been 

proved to be useful method for studying the structures with several basements.

Storey displacement profiles were also found almost similar for all the 

structures using dampers except the un-damped one. It is clear from the above results 

that, displacement of top story as well as vibration amplitude of structure is reduced 

by adding damper devices.
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Table 1. Top Story displacements for different cases

Top story Case A Case B Case C Case D Case E

displacements
(mm) 2.1 1.8 1.7 2 1.7

Figure 7. Story displacements for different cases

4.3 Base Shear

Base shear is the maximum lateral force at the base due to earthquake 

excitations. The values of base shear for different cases are as shown in Table 2. It is 

seen that as the flexibility of the structures decreases the value of base shear 

increases, since base shear is dependent on the primary factor, natural period. With 

the decrease in flexibility of the structure, the natural period of the building decreases 

and base shear increases. These values also associate with structural configurations. 

As building configurations also changed due to dampers, so these lead to higher base 

shear. It is expected that base shear would be low. Among the analysis results, Case 

A showed less base shear which was un-damped one. From the analysis, it is clear 

that base shear increased gradually as the level of basements is increasing. Here,
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Case C showed tremendous increase in base shear. From the results of base shear, 

Case B can be considered the suitable one against base shear among the damped 

structures.

Table 2. Base shear for different cases

Kind of Response Case A Case B Case C Case D Case E

Base
Shear(kN)

Max 287.7 322.9 529.14 509.88 497.7

Min -341.45 -305 -530.26 -552.22 -467.6

4.4 Inter storey drift

Inter-story drift is one of the important response parameters that are widely 

used in determining the seismic behavior of the structure. Comparison of drift for 

different cases is shown in Figure 8. From the graph it is observed that the drift 

increases from bottom storey to 4th storey. Almost for all cases, maximum values 

were found in 4th story level and then rapid decrease up to around 10th story level. 

Again, for Case A drift was found to be much higher comparing with other cases. On 

an average Case A showed around 50% higher drift in the upper stories comparing 

with other cases. So Case A shows poor performance in terms of drift compared to 

other cases. Study results indicate reduction of inter-story drift significantly due to 

effect of dampers.
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Figure 8. Inter-storey drifts of different cases

5 Conclusion

Present paper investigates the effect of horizontal dampers on the structural 

behavior of a building with multiple basements during an earthquake. A parametric 

study with time history analysis is done. Variation in dynamic properties such as 

natural time period, roof displacement, base shear and inter-story drift are observed. 

Based on observation of the results, the following main conclusion can be drawn:

(1) Fundamental natural periods of the un-damped building was more than the 

corresponding values of the damped buildings. Dampers decreased flexibility of the 

structures as a result fundamental natural periods decreased and the structures 

became stiffer.

(2) Dampers reduced seismic response of the structures thus less top story 

displacement found for the damped buildings. The displacement profiles of the 

damped structures along the story height were found also different, relatively much 

displacement observed at the one third heights of the damped buildings.

(3) Higher base shear found for the all damped cases due to increase in 

stiffness. In terms of base shear, Case B showed less among the damped structures.
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(4) Horizontal dampers dramatically changed inter-story drift of the structures 

which will make the structures safe against earthquake excitations.

The analysis results show that, horizontal damper devices are perfectly able to 

reduce the structural response as well as oscillation of structures. In summary, 

horizontal dampers can contribute significantly towards minimization of earthquake 

damages for multi-story buildings having basements. Analysis results predict there is 

a relation between the horizontal dampers and their location along the height of the 

building. In this study, dampers at the one eighth height of the structure showed the 

most pleasant result.

This study indicates horizontal dampers can be possible as an alternative to 

base isolation. Maintaining of horizontal dampers is much easier than base isolation 

in terms of cost and ease of installation.
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