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ABSTRACT 

Electric Vehicles (EVs) as the alternative to the current fossil fuel vehicles 

represent the most promising green approach to the electrification of a significant 

portion of the transportation sector. Taking the randomness of EVs’ charging/ 

discharging characteristics into consideration, a significant uncertainty will be added 

to the grid. Consequently, charging/discharging management of EVs in the presence 

of large scale intermittent Renewable Energy Resources is considered as the most 

significant challenge for the future smart grid. Tackling the challenges of stable 

operation, this thesis proposes a novel approach of micro-grid stability by exploiting 

the demand side management. In this context, a comprehensive interactive hierarchical 

based architecture for the electricity supply and demand interaction in a smart grid 

environment is proposed to encourage the high participation of residential customers 

in a new deregulated electricity market. A novel market-oriented energy imbalance 

management scheme is also proposed for the seamless integration of EVs to the grid 

in the presence of intermittent resources. The proposed scheme which, unlike previous 

works, utilizes the grid’s operating characteristics model within the signaling game-

theoretic approach for the successful operation of electricity market. Optimal decision 

strategies for both EV owners and utility are devised by capturing the conflicting 

economic interests of players together under load/generation uncertainties. Thus, this 

thesis presents a planning tool for electric utilities that can provide an insight into the 

implementation of demand response at the end-user level in an automated way to 

bridge the gap between scheduling EVs and its benefits. The efficacy of the proposed 

approach in reducing peak loads while satisfying customers’ needs are demonstrated 

and compared with other schemes. Results show that the proposed methodology can 

successfully alleviate more than 53% of the peaks caused by the mass adoption of EVs 

with the better utilization of intermittent resources and substantial amount of profit. 
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 ABSTRAK 

 Kenderaan Elektrik (EV) yang merupakan alternatif  kepada kenderaan jenis bahan 

api fosil semasa adalah suatu pendekatan yang menjanjikan penggunaan teknologi hijau dalam 

sebahagian besar sektor pengangkutan. Dengan mempertimbangkan kerawakan ciri-ciri 

pengecasan/penyahcasan EV, ciri-ciri ketidakpastian ketara akan ditambah ke dalam grid. 

Akibatnya, pengurusan pengecasan/penyahcasan EV di dalam Sumber Tenaga Boleh 

Diperbaharui berskala besar terputus-putus dianggap sebagai satu cabaran yang paling ketara 

untuk grid pintar masa hadapan. Bagi menangani cabaran kestabilan operasi, tesis ini 

mengusulkan satu kaedah baharu dalam kestabilan grid mikro dengan cara mengeksploitasikan 

pengurusan permintaan. Di dalam konteks ini, satu seni bina berasaskan hierarki interaktif 

secara menyeluruh untuk bekalan dan interaksi permintaan lebih banyak pelanggan kediaman 

di dalam pasaran baru elektrik ternyahkawalselia.  Satu skim pengurusan ketidakseimbangan 

berorientasikan pasaran baharu juga turut diusulkan bagi kelancaran integrasi EV ke grid  

dalam keadaan sumber terputus-putus. Berbanding kajian sebelum ini, skim yang dicadangkan 

ini menggunakan model bercirikan operasi grid dalam lingkungan kaedah pengisyaratan teori-

permainan bagi memastikan kelancaran operasi pasaran bekalan elektrik. Strategi keputusan 

optimum bagi kedua-dua pemilik dan penggunaan EV dirangka dengan mengambilkira 

percanggahan dalam keperluan ekonomi antara pihak-pihak yang terlibat di bawah keadaan 

ketidaktentuan beban/penjanaan. Maka, tesis ini membentangkan satu kaedah merancang 

utiliti elektrik yang dapat memberikan gambaran tentang pelaksanaan tindakbalas permintaan 

di peringkat pengguna secara automatik bagi merapatkan jurang antara penjadualan EV dan 

manfaatnya.  Keberkesanan kaedah yang dicadang dalam mengurangkan beban puncak di 

samping memenuhi keperluan pelanggan ditunjukkan serta dibandingkan dengan skim-skim 

yang lain. Hasil kajian menunjukkan bahawa kaedah yang dicadangkan berjaya menurunkan 

lebih dari 53% nilai puncak yang disebabkan oleh penggunaan massa EV dengan 

memanfaatkan penggunaan sumber terputus-putus dengan lebih baik yang turut memberikan 

jumlah keuntungan yang besar. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background  

The target of reducing fossil fuel consumption with improved efficiency, as well 

as environmental protection, has focused the world’s attention towards the electrification 

of vehicles [1,2]. As a promising future of the transportation sector, Electrical Vehicle 

(EV) is the best alternative that not only decreases the dependency on fossil fuels with low 

energy cost but also increases the efficiency of the grid [3,4]. EV has two types of 

operational mode when connected to the network: a) Charging or Grid-to-Vehicle (G2V) 

mode and b) Discharging or Vehicle-to-Grid (V2G) mode [5,6]. In charging mode, EV is 

considered as a special connected load to the grid that has the unique characteristic of a 

controllable charging process for its batteries [7]. The extensive deployment of EVs and 

their random charging will lead to a significant new unknown load on the existing 

distribution grids [8,9]. With the fact that many of these networks do not have any spare 

capacity, resulting in grid failure, voltage/frequency degradation and bringing down the 

power quality[10]. V2G is another important mode of operation of EVs [11] that can be 

seen as the distribution generation plants or the energy-stored devices. It allows modern 

innovation to supply electric power to the stressed grid for ancillary services such as 

supply/demand matching, etc. [12,13].  

EVs can effect generation, transmission and distribution networks of power 

systems [14] but the most stressful challenging aspect is the distribution networks supplied 

by Renewable Energy Resources (RERs) [15], called micro-grid network (MGN). 
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Although RER is familiar as environmentally friendly, but not all of them are reliable, 

efficient and cost effective [16].  There will be notable consequences in the electric power 

distribution grid due to the fluctuating nature supply from RERs and the unpredictable but 

high power demand from the EVs’ integration [17,18]. Mass adoption of EVs to such 

systems adds further complexities in planning and operation of the grid, especially in the 

domain of market-oriented tasks [19-21]. Therefore, stability and reliability aspects of 

future distribution grid are getting importance day by day as the share of RER increases 

in power systems [22,23].  

More researches are needed to limit the impact of the integration of EVs and RERs 

into the existing electric power networks. Previously, the problem of grid stability is 

addressed mostly from the perspective of supply-side management. However, this work 

explores a new dimension of tackling the challenging issue of the stable operation of the 

power grid by exploiting market-oriented Demand Side Management (DSM). DSM can 

simply be described as any action taken on consumer’s side to optimize energy 

consumption. DSM facilitates the efficient use of energy by means of energy conservation 

through both behavioral and operational changes in the customer premises. The main 

advantage of using DSM is that it does not require expensive additional resources (like 

new generation) to be erected. All this makes the option of DSM advantageous and, 

therefore, attractive to cope with the problems of Smart Grid (SG) stability. Thus, the 

primary objective of this thesis work is to address the changing scenario of the future grid 

and explore ways to help in smooth integration of EVs into the power system in the 

presence of RERs. Focus has been paid on proposing a smart way of utilizing the EVs to 

enhance the quality and stability of the grid.  

1.2 Problem Statement  

The problem of reliable and consistent energy supply is increasing very rapidly 

throughout the world that is facing an alarming shortage of electrical energy. Due to 

the rising energy demand and limited generation, it is very challenging to supply 

sufficient amount of reliable power. Along with the growth of electricity demand and 

the penetration of intermittent RERs, electric power distribution networks will face 
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more stressed conditions, especially as EV is getting more popularity worldwide and 

take a greater share of the personal automobile market. The wide deployment of EVs 

and their charging process will lead to a significant new unknown load on the power 

grids [24-27][28], with the fact that many of these networks do not have any spare 

capacity, resulting in grid failure and bringing down the power quality [29].  

Effects of EVs on the power systems include the generation, transmission and 

distribution networks but the most stressful challenging aspect is the MGN supplied 

by RERs [30]. Mass adoption of EVs to such systems adds further complexity in 

planning and operation of MGN, especially in the domain of market-oriented tasks 

[31-35]. This scenario motivates to investigate the potential of SG [36-38] 

technologies by integrating a novel market-oriented DSM scheme to obtain a stable 

and self-organizing power distribution grid (i.e. smart MGN) in the presence of 

renewable energies and future upcoming loads of EVs with increased power 

availability and quality [41-44]. 

Although a number of technological elements of SG are available in the market 

but still there is lack of a detailed structural framework for SG which is necessary for 

combining the conventional infrastructure to the promising control, communication 

and information systems of the power grid [45]. In the absence of a comprehensive 

framework, it is quite difficult to resolve the problems of designing the market oriented 

DRPs techniques to provide the vast grid flexibility, to improve the consumer’s 

responsiveness and to enhance the power delivery [46]. 

Enormous opportunities for DRPs among residential customers exit and 

therefore, they represent a vast untapped potential for DRPs [47,48].The critical issue 

faced by all players participating in the MGN electricity market is how to take the 

decision to optimize their bidding decision strategies according to the limited 

information available to maximize their profits [49,50]. Since electricity markets are 

liberalized [51], residential customers are exposed to more volatile prices and may 

have to decide to modify their demand accordingly to reduce electricity usage costs 

[52,53]. The primary difficulty in this problem arises from the lack of information 
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about electricity prices and adjustment markets [54-63]. Residential customers have 

neither expertise nor motivation due to the associated discomfort to negotiate 

themselves in the market. Therefore, they usually do not effectively participate in 

power markets, thus influencing the residential customers’ participation in trade of the 

electricity market and tends to the failure of DRPs [64,65].Our work aims to bridge 

this gap among the existing researches. This has motivated us not only propose an 

automated market-oriented DSM scheme but also develop a new decision support 

framework in order to help customers as well as utility to make their decision. In 

contrast to current researches, this thesis intends to comprehensively address the 

decision-making strategies by joint consideration of the economic optimization 

problems of the response of residential customers and utility under the MGN 

uncertainties for incorporating RERs.  

1.3 Research Objectives 

The primary objective of this thesis is to develop a smart MGN that can tackle 

the future upcoming challenges of stochastic integration of EVs in the presence of 

intermittent resources to the power grid. The proposed planning tool comprise of a 

control algorithm for both utility-customers as well as a simulation platform that are 

designed to intelligently managing the load-supply balance in RERs based MGN via 

deregulated electricity market and successfully integrate the unknown load of EVs. 

The proposed system would be efficient enough to manage itself for power balance by 

taking measures on DSM.  Hence, the summary of objectives is as follow: 

i. To build a comprehensive interactive hierarchical based architecture for the 

electricity supply and demand interaction in a smart MGN environment.  

ii. To propose optimal strategies modeling in electricity market for the smooth 

integration of EVs in the presence of intermittent resources.  

iii. To develop a novel, real-time, user-aware Cost-Benefit based DSM scheme in 

order to control the growth rate of EVs and reduce the peak load in the presence 

of RERs. 
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iv. To perform the evaluation and validation of proposed real-time decision 

strategies based DSM schemes. 

1.4 Scope  

The scope of this research work includes the following.  

i. This study concentrates on the modeling of DSM scheme for the successful 

integration of EVs to the RERs based MGN. Therefore, it is conducted on the 

residential customers only, but the research findings can also be used for the 

other type of customers. 

ii. The proposed method can be used for both grid-connected and isolated MGNs. 

However, only the independently operated isolated MGNs are considered for 

current study. 

iii. Network load flow calculations and other related aspects like frequency 

variation, voltage variations etc. are not considered in this study. The frequency 

and voltage of MGN are assumed to be constant and no frequency/voltage 

control mechanism is adopted exclusively for the network that are supposed to 

be control by DGs controller. 

iv. This project has focused only on the wind and solar generation for simulation 

purposed. Other types of DGs are not considered in the simulation. 

v. Only one type of EV’s charging is considered for this study. 

vi. The modeling of communication system is out of the scope the thesis. 

1.5 Research Contribution 

The contributions of the research are:  
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i. A comprehensive interactive hierarchical based modeling architecture for the 

electricity supply and demand interaction (i.e. the utility company and EV 

owners) in a smart MGN environment is developed. The proposed architecture 

design combines the features of centralized control with distributed control to 

achieve an excellent system performance and enough flexibility. Meanwhile, 

it has a low system complexity and thus easy to realize in power systems and 

suitable for the implementation of proposed automated DSM scheme. 

ii. Real-time, market-oriented strategies are proposed for the smooth integration 

of EVs to the grid in the presence of intermittent resources. Conflicting 

economic interests of both players are captured together by using the economo-

SGT within the regulatory framework of MGN. The proposed approach is 

based on realistic price function rather than resorting to models that arbitrarily 

choose demand elasticity or consumer benefits functions. The profit 

maximization function for both the stakeholders is incorporated in the model. 

The dynamics of demand response is rigorously accounted by using a MGN 

characteristics model within a game-theoretic approach. Previously, it is often 

heuristically tackled.  

iii. A real-time, user-aware Cost-Benefit based DSM scheme is developed. It 

comprised of  

(a) A state-of-art load responsive model of EVs for the evaluation of 

the impact of customer’s participation in the proposed scheme.  

(b) Since it is also important to analyze how EV owners operate their 

EV batteries optimally to receive the maximum benefit; a dynamic 

optimal operation model of EVs representing the hybrid V2G-G2V 

systems is developed for the optimal operation of EVs batteries into 

the deregulated electricity market.  

Hence, the problem of a deregulated market with real-time pricing for the 

utility, elastic demand responsiveness, and inter-regional balance is formulated 

and solved at one stage. This analysis can benefit utilities by helping design 

proper incentives to encourage residential customers to participate in market-

oriented DRPs, and provide EV owners better understandings of trade-offs to 

enroll in a DRPs so that they can manage their electricity usage accordingly. 

iv. A simulation modeling framework has been developed, which facilitates 

evaluation of the DRPs strategies in the electric power system. It has the 
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capability of integrating all the potential components and capturing the intricate 

interdependency among those components. 

1.6 Thesis Outlines 

This thesis is arranged as follows: 

The current chapter presents a brief introduction of the background 

information, highlight the problem statement, research motivation and the objectives 

of the research.  

Chapter 2 gives a review of techniques, methods and algorithms of DSM/ 

DRPs used for the integration of EVs into the power grid were carried out.  Also, the 

merits and demerits of the previous approaches are presented. Knowledge gaps are 

identified and given at the end of this chapter. 

Chapter 3 presents a comprehensive interactive hierarchical based architecture 

for the electricity supply and demand interaction (i.e. utility company and EV owners) 

in a smart MGN environment for real-time energy imbalance scheme. A framework is 

proposed in this chapter to address various problems of market-oriented DSM 

schemes. 

The derivations of the proposed novel real-time DSM system to address the 

problems of sophisticated energy management at the residential household level with 

the incorporation of EVs and RER is described in Chapter 4. 

To evaluate the performance of proposed real-time DSM scheme, a 

comprehensive simulation modeling with variable load demand of EVs and stochastic 

generations has been presented in detail in Chapter 5.  



8 

Chapter 6, the practical investigation of the proposed work is presented. Under 

different loading condition and system configurations, the effectiveness and the 

performance of the proposed DSM scheme are evaluated and validated.  

Chapter 7 presents the overall conclusions of the significant achievements of 

this work, and the general conclusion is drawn. Suggestions for further studies are also 

presented. 
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several possible future work paths along the same line of DSM scheme to alleviate the 

stress conditions of grid and to accommodate higher levels of EV loads into the RER 

based distribution network.  

The thesis reviews the existing work on the grid-integration of EVs and various 

DRPs schemes in context of SG in chapter 2. Optimal real-time market-oriented DRPs 

strategies based on economo-SGT are proposed to manage the stochastic load of EVs 

by taking into account the operational constraint of intermittent generation based MGN 

in chapter 3 and 4. This proposed scheme is set to make the upcoming EV load 

transparent to the MGN. This study has also analyzed the use of battery storage of 

EVs, which is represented as V2G systems to provide power balancing reserves in the 

market-oriented operation of the future grid. Stochastic RER generation, residential 

loads as well as EVs, are modeled in chapter 5. Various scenarios and case studies are 

performed with different penetration levels of EV for validation of the proposed DSM 

in chapter 6.  

7.2 Recommendations for Future Studies 

The dissertation has made a contribution in defining a methodology regarding 

optimal DSM scheme for EV integration into the SG in the presence of intermittent 

resources. However, there are many areas of future work that could be built on the 

contributions of this dissertation. The important research topics that could be 

considered for further investigation are listed as follows: 

 

i. In addition, without specification, the methodology presented in this 

dissertation can be readily extended to integrating other electricity appliances 

into the market oriented DSM scheme in SG environment. 

ii. After obtaining the simulation results with increased number of real-world 

appliances, the prototype of the proposed system must be deployed on the 

laboratory level.  
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iii. This study can be extended by integrating the other type of customers i.e. 

industrial customer and bulk electricity users. 

iv. Extension of study to the other levels of the hierarchal architecture of SG. 

Although this research achieved promising results in analyzing dynamic EVs 

impact and utilization in power systems, the work does not end here. It is the starting 

point of a new era of using EV in various ways. It is believed that any of the above 

suggestion is challenging and need to be given immediate consideration. 
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