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ABSTRAK 

Perhimpunan gen adalah teknik untuk mengenalpasti jujukan gen berdasarkan 

serpihan gen yang dijana oleh mesin penjujukan. Serpihan gen tersebut adalah pendek dan 

banyak. Sekiranya bilangan serpihan gen meningkat, kerumitan masalah meningkat, dan 

situasi ini menjadikan ruang penyelesaian menjadi semakin luas. Untuk menyelesaikan 

masalah ini, serpihan gen perlu disusun di dalam susunan yang betul. Namun, disebabkan 

kerumitan dan ruang penyelesaian yang besar, penyelesaian sukar didapati. Melihat dari 

perspektif pengkomputeran, masalah perhimpunan serpihan gen dianggap sebagai 

masalah polinomial tidak berketentuan (NP), dimana masalah ini boleh diselesaikan 

dengan menggunakan algoritma metaheuristik. Algoritma metaheuristik 

mengoptimumkan masalah dengan mencari penyelesaian yang hampir optimal. Dalam 

penyelidikan ini, satu algoritma hiper-heuristik dicadangkan untuk menyelesaikan 

masalah perhimpunan serpihan gen. Penyelidikan ini dibina berdasarkan tiga objektif. 

Pertama, untuk menganalisa dua algoritma metaheuristik, iaitu Pengoptimuman Reaksi 

Kimia (CRO) dan Algoritma Kuantum yang diinspirasikan daripada Algoritma Evolusi 

(QIEA). Kedua, algoritma hiper-heuristik yang baru dibangunkan berdasarkan CRO dan 

QIEA. Ketiga, penyelesaian yang didapati daripada ketiga-tiga algoritma dinilai 

menggunakan analisis statistik. Prestasi algoritma-algoritma dinilai dengan menggunakan 

analisis penumpuan. Persamaan draf gen yang dijana oleh algoritma dianalisis dengan 

menggunakan Alat Pencarian Penjajaran Tempatan (BLAST). Hasil kajian menunjukkan 

bahawa QCRO boleh mencari susunan serpihan-serpihan gen dengan betul dan dapat 

menyelesaikan masalah perhimpunan serpihan gen. Kesimpulannya, penyelidikan ini 

membentangkan algoritma hiper-heuristik baru untuk menyelesaikan masalah 

perhimpunan serpihan gen yang dibuat berdasarkan dua algoritma metaheuristik. 

Algoritma ini boleh mencari susunan serpihan gen yang betul dan menyelesaikan masalah 

perhimpunan gen. 
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ABSTRACT 

Gene assembly is a technique to construct a gene sequence by referring to gene 

fragments generated by sequencing machine. The gene fragments are often short and come 

in large number. As the number of gene fragments increases, the complexity of the 

problem increases, and this situation produces a wider solution space. To solve the gene 

assembly problem, the gene fragments need to be arranged in the right order. However, 

due to the complexity and wide solution space, the accurate solution to this problem is 

difficult to be found. By looking from the computational perspective, gene assembly 

problem is considered as nondeterministic-polynomial (NP) problem, where the gene 

assembly problem can be solved by using metaheuristic algorithms. Metaheuristic 

algorithms optimize the problem by searching for almost optimal solution. In this research, 

a hyper-heuristic algorithm is proposed to solve gene assembly problem due to its 

advantages that overcome the metaheuristic algorithms. This research is conducted based 

on three objectives. First, to analyze two metaheuristic algorithms, Chemical Reaction 

Optimization (CRO) and Quantum Inspired Evolutionary Algorithm (QIEA), to solve the 

problem. Second, a new hyper-heuristic algorithm (QCRO) is developed based on CRO 

and QIEA. Third, the solutions generated from all three algorithms are evaluated by using 

statistical analysis. The performance of the algorithms is evaluated by convergence 

analysis. The similarities of the draft gene sequence generated by the algorithms are 

analyzed by using Basic Local Alignment Search Tool (BLAST). The findings show that 

QCRO is competent in finding the right order of the fragments and solving the gene 

assembly problem. In conclusion, this research presented a new hyper-heuristic algorithm 

to solve gene fragment assembly problem that is derived from two metaheuristic 

algorithms. This algorithm is capable of finding the right order of the gene fragments and 

thus solves the gene assembly problem.  



vii 

 

TABLE OF CONTENTS 

CHAPTER TITLE PAGE 

DECLARATION          ii 

ACKNOWLEDGEMENT         iv 

ABSTRAK          v 

ABSTRACT         vi 

TABLE OF CONTENTS         vii 

LIST OF TABLES          x 

LIST OF FIGURES         xi 

LIST OF ABBREVIATIONS       xii 

1 INTRODUCTION          1 

1.1 Problem Background 1 

1.2 Problem Statement 3 

1.3 Research Goal and Objectives 3 

1.4 Research Scope and Significance 4 

1.5 Thesis Outline 4 

1.6 Summary 5 

2 LITERATURE REVIEW          6 

2.1 Gene Sequence 6 

2.2 Overview on Gene Fragment Assembly 8 

2.3 Sequence Alignment Analysis 9 

2.4 Metaheuristic Algorithm 11 



viii 

 

2.4.1 Genetic Algorithm (GA) 12 

2.4.2 Particle Swarm Optimization (PSO) 13 

2.4.3 Firefly Algorithm  (FA) 14 

2.4.4 Ant Colony Optimization (ACO) 15 

2.4.5 Quantum-inspired Evolutionary Algorithm (QIEA) 15 

2.4.6 Chemical Reaction Optimization Algorithm (CRO) 18 

2.5 Overview on Several Available Gene Assembly Software 22 

2.6 Hyper-heuristic Algorithm 26 

2.7 Research Trends and Directions 28 

2.8 Summary 30 

3 RESEARCH METHODOLOGY          31 

 Introduction 31 

 Research Framework 31 

 Dataset for Experiment 34 

 Problem Formulation 35 

 Performance Measurement 36 

3.5.1. Statistical Analysis 36 

3.5.2. Fitness Convergence 37 

3.5.3. Validation with BLAST Alignment 37 

 Summary 38 

4 DEVELOPMENT OF CRO AND QIEA FOR GENE 

FRAGMENT ASSEMBLY            39 

4.1 Overview 39 

4.2 CRO for Gene Fragment Assembly 39 

4.3 QIEA for Gene Fragment Assembly 41 

4.4 Experimental Result 43 

4.5 Summary 48 

5 DEVELOPMENT OF HYPER-HEURISTIC        49 

 Overview 49 

 Metaheuristic-based Hyper-heuristic Algorithm 51 



ix 

 

 Convergence Analysis of CRO, QIEA, and QCRO 53 

 Statistical Analysis 59 

 Validation with BLAST Analysis 61 

 Summary 62 

6 CONCLUSION AND FUTURE WORKS         63 

6.1 Conclusion 63 

6.2 Future Works 64 

REFERENCES        65 

 

 



x 

 

LIST OF TABLES 

TABLE NO. TITLE PAGE 

Table 2.1 Elementary reactions and its suggested operators (Lam and Li, 

2010a, 2012) 22 

Table 2.2    Gap analysis table of available software for gene assembly. 24 

Table 3.1   Details of datasets. 35 

Table 4.1 Experimental result with CRO. The experiment is tested on various 

controlled and manipulated variable. The bolded value is the 

maximum fitness score for each instance. 45 

Table 4.2 Experminetal result with QIEA. The experiment is tested on various 

controlled and manipulated variable. The bolded value is the 

maximum fitness score for each instance. 46 

Table 4.3    CRO analysis. The CRO algorithm was run for 10 times. Variable b 

is the best fitness score, w is the worst fitness score, m is the mean 

of the maximum fitness scores, and s is the standard deviation of 

fitness scores. Parameters: iteration=1000, population size=1000. 47 

Table 4.4    QIEA analysis. The QIEA algorithm was run for 10 times. Variable 

b is the best fitness score, w is the worst fitness score, m is the mean 

of the maximum fitness scores, and s is the standard deviation of 

fitness scores. Parameters: iteration=1000, population size=1000. 47 

Table 5.1 Statistical comparison of CRO, QIEA, and QCRO. The best 

maximum fitness score of each algorithm is labelled with *. 60 

Table 5.2     Best result alignment from CRO, QIEA, and QCRO compared for 

the similarity with the original sequence.        61 



xi 

 

LIST OF FIGURES 

FIGURE TITLE PAGE 

 

Figure 2.1    A double helix of DNA strands (Zephyris, 2011) 7 

Figure 2.2    Global alignment (Mount, 2001). 10 

Figure 2.3    Local alignment (Mount, 2001). 11 

Figure 2.4    Process flow of QIEA (Han and Kim, 2002) 18 

Figure 2.5    Framework of CRO 19 

Figure 2.6    Framework of hyper-heuristic (Burke et al., 2003) 27 

Figure 2.7    Several framework of hyper-heuristics 29 

Figure 3.1    Resarch framework 33 

Figure 3.2    Example of BLAST output. 38 

Figure 4.1 Pseudocode of CRO used to solve gene fragment assembly. The 

parameter involved is population size, iteration, kinetic energy loss 

rate, initial kinetic energy, alpha, beta, and molecule collision rate, 

and the value of the parameters is set as 1000, 1000, 0.2, 500, 10, 

0.2, respectively. 41 

Figure 4.2    Pseudocode of repair algorithm. 43 

Figure 5.1 Hyper-heuristic framework modified from FA in Figure 2.7 to fit 

with algorithm QIEA and CRO criteria 50 

Figure 5.2   Framework of hyper-heuristic QCRO 52 

Figure 5.3   Convergence analysis graph for instance A 54 

Figure 5.4   Convergence analysis graph for instance  B 54 

Figure 5.5   Convergence analysis graph for instance C 55 

Figure 5.6   Convergence analysis graph for instance D 56 

Figure 5.7   Convergence analysis graph for instance E 57 

Figure 5.8   Convergence analysis graph for instance F 58 

Figure 5.9   Convergence analysis graph for instance G 58 

 



xii 

 

LIST OF ABBREVIATIONS 

A - Adenine  

ACO - Ant colony optimization 

C - Cytosine 

CRO - Chemical reaction optimization 

DNA - Deoxyribonucleic acid 

FA - Firefly algorithm  

G - Guanine 

GA - Genetic algorithm  

mRNA - Messenger RNA 

NP - Nondeterministic polynomial 

NWA - Needleman Wunsch algorithm 

OS - Operating system 

PSO - Particle swarm optimization 

QIEA - Quantum-inspired evolutionary algorithm 

RNA - Ribonucleic acid 

SA - Simulated annealing 

SWA - Smith-Waterman algorithm 

T - Thymine 

TSP - Travelling salesman problem 

U - Uracil 



 

 

CHAPTER 1 

INTRODUCTION 

1.1 Problem Background 

Metabolic engineering is a study of biochemical reactions in biochemical reaction 

pathways. The fundamental of the metabolic engineering is to analyze cells as the integral 

units. This study involves pathway synthesis, thermodynamic feasibility, and pathway 

flux and flux control. One important application of metabolic engineering is to manipulate 

the yield and productivity of products synthesized by microorganisms (Keasling, 2010). 

To date, various researches that involved the manipulation of metabolic engineering have 

been carried out extensively.  

 

As the synthetic biology and metabolic engineering area of study partially overlap, 

a number of studies have presented the used of synthetic biology to facilitate metabolic 

engineering especially in the applications of industrial biotechnology (Keasling, 2012) 

and industrial microbiology (Zhang and Nielsen, 2014). Synthetic biology aims to create 

new biologically functional parts, modules and systems by utilizing various molecular 

biology and synthetic deoxyribonucleic acid (DNA) tools together with the use of 

mathematical methodologies to perform new tasks (Chandran et al., 2011; Copeland et 

al., 2012). The concepts of synthetic biology follow the concepts of computer engineering 

hierarchy (Andrianantoandro et al., 2006; Chandran et al., 2011; Kronberger, 2012). 

 

The hierarchy consists of few layers: physical layer, device layer, and module 

layer. In this hierarchy, in physical layer, the transistor, capacitors, and resistors represent 
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the DNA, ribonucleic acid (RNA), proteins and metabolites. In the device layer, the 

biochemical reactions in microorganisms represent the engineered logic gates that perform 

computations in a computer. In the module layer, a library of biological devices to 

assemble pathways represented integrated circuits. The modules and their integration into 

host cells can be modified in a programmatic fashion. Biological devices and modules are 

often dependable to each other.  Hence, when the devices or modules are engineered, it 

will modify the whole cells itself (Andrianantoandro et al., 2006; Chandran et al., 2011; 

Kronberger, 2012). 

 

One major focus in synthetic biology is to engineer a complex cellular behavior 

by assembling and expressing genes that will encodes well – characterized biological 

components. Each cellular function is carried out by ‘modules’ made up of numerous 

species of interacting molecules. The modules are separable by function. Insulation of 

modules allow cell to have many diverse reactions without bring any harm to the cell. 

Connectivity of modules allows one function to influence another (Ajikumar et al., 2010). 

Some challenges of metabolic engineering require the use of synthetic biology. For 

example, metabolic engineering is about designing, engineering and optimizing pathways 

to produce variety of products. Synthetic biology provides synthetic DNA for the 

constructed metabolic pathway.  

 

Heuristic refers to experience-based techniques to find or to discover by trial and 

error of a problem. Metaheuristic method means to find or to discover the problem by 

using higher level heuristic method and perform better than simple heuristics. Hyper-

heuristic method is a search method that includes the integration of machine learning 

techniques to automate the process of selecting, combining, generating or adapting few 

heuristics or its components to solve computational search problems. 
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1.2 Problem Statement 

In genome sequencing, a set of gene fragments is generated from the sequencing 

machine. The gene fragments itself have several problems. The gene fragments are not in 

order. The gene fragments order is decided base on the computed overlap score.  

 

Several challenges are identified. The fragments have unknown orientation. The 

sequence can be read as 5’ to 3’ or 3’ to 5’. If the algorithm is not able to assemble a set 

of fragments into single contig, the solution is said to have incomplete coverage. The gene 

fragments may have repeated regions.  

 

The total amount of fragments generated is proportional to the size of original 

gene. The fragments are not in order, wide solution space, and it is time consuming. 

Hence, the running time increase with the number of fragments. This problem can be 

solved by using optimization algorithm. 

1.3 Research Goal and Objectives 

The goal of this research is to apply metaheuristic algorithm to solve assembly 

problem. The following are the objectives of research.  

a. To analyze two metaheuristic algorithms, CRO and QIEA to solve gene 

fragment assembly problem. 

b. To develop a new hyper-heuristic algorithm based on CRO and QIEA, called 

QCRO to solve gene fragment assembly problem. 

c. To validate the result from CRO, QIEA, and QCRO using existing gene 

sequence database. 
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1.4 Research Scope and Significance 

Several DNA fragment benchmark datasets were used to study the performance of 

the proposed algorithm for gene assembly problem. The dataset is provided in 

http://chac.sis.uia.mx/fragbench/ website by Mallén-Fullerton et al. (2013). The file 

format of the dataset is in the form of FASTA and Comma-Separated Values (CSV) for 

its tabular data. The score of each overlap fragments are presented in matrices form. The 

method used to optimize the problem is CRO and QIEA. The algorithms were 

programmed by using programming language Python. Several open source dependencies 

libraries for Python such as numPy (Van der Walt et al., 2011), sciPy, MatPlotLib (Hunter, 

2007), is used for multidimensional array, numerical routines, and graph plotting 

purposes, respectively. The experimental result is generated in silico. 

 

The significance of the research is addressed as follows. First, new hyper-heuristic 

algorithm is designed and developed in terms of the computational contribution. The 

algorithm employs the heuristic operations of CRO and QIEA to increase the search 

ability in order to find a good quality of overlap order without the being dependent of the 

problem and parameters tuning. The outcomes of this research may benefit the 

biotechnology industry. This is due to the contribution of a new approach in solving gene 

assembly problem. Since the hyper-heuristic algorithm is problem-independent, the 

algorithm can be reused and applied for another computational problem such as TSP 

(Burke et al., 2010; Burke et al., 2003; Burke et al., 2013). 

 

 

1.5 Thesis Outline 

This thesis is composed of few chapters. 

 Chapter 1: This chapter provides the introduction of the research which 

includes the research background, problem statement, goal and objectives, and 

scope and significance of the study. 

http://chac.sis.uia.mx/fragbench/
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 Chapter 2: This chapter provides the literature review of the research. It starts 

with the overview of gene sequence. Then, it proceeds with the discussion of 

gene fragment assembly problem. Next, the chapter continues on the overview 

of sequence alignment analysis and discussed the potential metaheuristic 

algorithms should be used on the research. The research trends and directions 

on the related issues discussed. 

 Chapter 3: This chapter presents the overview of the research operational 

framework, the flow of the thesis development, and the metaheuristic 

algorithms, programming language and software used in this study. 

 Chapter 4: This chapter discusses the design and development of Chemical 

reaction optimization algorithm and Quantum-inspired evolutionary 

algorithm to solve gene fragment assembly problem. 

 Chapter 5: This chapter discusses the design and development of hyper-

heuristic algorithm to solve gene fragment assembly problem. 

 Chapter 6: Conclusion of the research. This chapter also includes contribution 

of the works and future plans 

 

 

1.6 Summary 

In conclusion, synthetic biology area of study follows the concepts and principle 

of engineering to produce new biological parts, systems, or devices with improved 

functionality. The use of computational tools in this area of study provides necessary 

knowledges to solve problem encounters. One problem can have numerous possible 

solutions available. To find the best solution out of the possible solution, metaheuristic 

algorithm is used. The metaheuristic algorithm can come in many forms and the result is 

varied. The metaheuristic algorithm is also problem dependent. Hence, selecting the 

correct algorithm is necessary to solve specific problem.
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