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Membrane filtration system is one of the effective ways to remove micro-

pollutants such as natural organic matter (NOM) in water treatment process. The 

surface of the membrane is, however, easily fouled by the deposition of NOM, 

thereby decreasing flux and separation performances. Thus, in this study, a series of 

polyvinylidene fluoride/titanium dioxide (PVDF/TiO2) hollow fiber membranes with 

different TiO2 loadings ranging from 0-3 wt.% were prepared via phase inversion 

method. The result shows that morphology of membrane layer becomes denser and 

thicker with the addition of TiO2. The increase of TiO2 loadings ranging from 0 to 2 

wt.% resulted in the increase of membrane pore size from 142 to 155 nm with 

increase surface roughness from 20.2 to 23.98 nm. However with further increase of 

TiO2 loading the pore size and surface roughness decreased to 152 and 19.33 nm 

respectively. The mechanical strength of membrane showed slight improvement 

from 3.01 MPa to 3.41 MPa as TiO2 loading increased from 0 to 2 wt.% before 

reducing to 3.06 MPa with further increase of 3 wt.% TiO2. Water contact angle 

demonstrated that with increase TiO2 loading from 0 to 2 wt.% the contact angle was 

lowered slightly from 79
o
 to 74

o
. At 2 wt.% TiO2 loading, the highest peak values 

achieved were 37.86 L/m
2
h for polymer organic solution flux and 39.04 L/m

2
h for 

pure water flux. Membrane with 2 wt.% of TiO2 loadings gives the highest rejection 

for all molecular weights of PVP. 14 % flux reduction were achieved at 2 wt.% TiO2 

loadings for pure water flux after organic polymer rejection test from 38.64 L/m
2
h to 

33.11 L/m
2
h. Based on this study, it was found that membranes with 2 wt.% addition 

of TiO2 were excellent in mitigating fouling particularly in reducing fouling 

resistance and increasing the rate of rejection.  
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Sistem penapisan membran merupakan salah satu cara yang berkesan untuk 

menghilangkan bahan pencemar mikro seperti bahan organik semulajadi (NOM) 

dalam proses rawatan air. Walaubagaimanapun, pemendapan NOM pada permukaan 

membran mengakibatkan kerosakan pada membran dan memberi kesan penurunan 

fluks dan prestasi pemisahan. Oleh demikian, satu siri membran serat berongga 

poliviniliden fluorida/titanium dioksida (PVDF/TiO2) telah disediakan melalui 

kaedah fasa songsang dengan muatan TiO2 berbeza pada julat 0 hingga 3 wt.%. 

Keputusan menunjukkan morfologi lapisan membran menjadi padat dan tebal dengan 

kehadiran TiO2. Peningkatan muatan TiO2 pada julat dari 0 hingga 2wt.% 

menyebabkan peningkatan pada saiz liang membran daripada 142 kepada 155 nm, 

dengan peningkatan permukaan kasar daripada 20.2 kepada 23.98 nm. 

Walaubagaimanapun, penambahan muatan TiO2 menyebabkan saiz liang dan 

permukaan kasar berkurang kepada 152 nm dan 19.33 nm. Kekuatan mekanikal 

membran pula menunjukkan sedikit peningkatan daripada 3.01 MPa kepada 3.41 

MPa apabila muatan TiO2 ditambah daripada 0 hingga 2 wt% sebelum pengurangan 

kepada 3.06 MPa apabila penambahan 3 wt% TiO2. Sudut sentuhan air pula 

menunjukkan peningkatan muatan TiO2 daripada 0 hingga 2 wt%, sudut sentuhan air 

membran menunjukkan pengurangan kecil daripada 79
o
 kepada 74

o
. Pada 2 wt.% 

muatan TiO2, puncak paling tinggi yang dicapai adalah 37.86 L/m
2
j bagi flux larutan 

polimer organik dan 39.04 L/m
2
j bagi flux larutan air tulen. Membran dengan 2 wt.% 

muatan TiO2 juga menunjukkan penolakan paling tinggi bagi semua jenis berat 

molekul PVP. 14 % pengurangan fluks telah dicapai pada 2 wt.% muatan TiO2 dalam 

flux air tulen selepas ujian penolakan polimer organik daripada 38.64 L/m
2
j kepada 

33.11 L/m
2
j. Berdasarkan kajian ini, membran dengan 2 wt.% muatan TiO2 adalah 

sangat baik dalam mengurangkan kerosakan terutamanya dalam mengurangkan 

kerosakan membran dan meningkatkan kadar penolakan. 
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 CHAPTER 1

 

 

 

INTRODUCTION 

1.1 Background of Study 

Drinking water is essential to human life. Drinking water resources are 

mainly from rivers or water bodies that enter water treatment plant (WTP) before 

distribution. In the past decade, the WTPs were designed to treat contaminants that 

exist in water bodies such as natural organic matter (NOM) and ammonia. These 

compounds are found in the water body or originated from either soil upstream water 

bodies. Mostly they were from plantation or aquatic plants that flow in water bodies 

by precipitation, underground flow and flood.  

However, there are some problems in existing WTP where the presence of 

free chlorine content that is used as a disinfectant is found to react with residual 

NOMs. This reaction process has been found to have a tendency to form disinfection 

by-products (DBPs) such as trihalomethanes, haloacetic acids and other halogenatic 

organics. DBPs are carcinogens and direct exposure may lead to cancers, 

miscarriages and nervous system complications (Zularisam et al., 2006).  

Moreover, the increasing soil erosion and flood from unplanned construction 

and rapid economic development will increase the amount of NOMs which leads to 

problems in existing WTP (Tian et al., 2009). Certainly, up to date existing WTP are 
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not able to eliminate these DBPs to a satisfactory level, thus an advanced treatment 

process is needed (Wintgens et al., 2002). 

At present, the development of membrane technologies has attracted attention 

in the field of water treatment process. Microfiltration and ultrafiltration are used 

when membrane filtration is applied for removal of larger particles. Therefore, in this 

study, a hydrophilic polyvinylidene fluoride polymer membrane a hollow fiber 

configuration was investigated. The performance of membrane were analysed with 

different characterization such as hydrophilicity, mechanical, thermal and flux 

reduction.   

1.2 Problem Statement 

Based on the research background, the potential of micropollutants such 

NOM with various molecular weight cut-off react with chlorine during the 

chlorination process potentially forming disinfection by-products such as 

trihalomethanes (THMs), halocetic acids (HAs), and other halogenated organics in 

current conventional water treatment. THMs, HAs and many other by-products 

which are potentially hazardous to human body have been detected in the drinking 

water although at low level concentration.  

Among all water treatment technologies, one of the most promising options 

for pollution separation and purification is membrane technology. Membrane 

processes are becoming more popular in water treatment because the process can 

purify water without chemical addition and prevent the formation of toxic DBPs 

(Rana et al., 2005). The benefits of membrane treatment process have been 

highlighted as having a small footprint, compact module, low energy consumption, 

environmental friendliness (Zularisam et al., 2006).  
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However, membrane fouling is one of the biggest obstacles that constrain the 

use of membrane in technical or even economical view (Balta et al., 2012). One of 

the causes is adsorption of organic pollutants into the pores and deposition on the 

membrane surface that would limit the water transportation across the membrane 

itself at the same time increasing energy consumption and reducing membrane life 

(Asatekin et al., 2007). Therefore, a quick measure is needed to further extend the 

application of membrane-based process for water treatment such as developing 

hydrophilic, antifouling and high flux performances membrane (Li et al., 2014).  

Many attempts have been carried out to adjust membrane surface like surface 

charge, pore size and hydrophilicity, effectively in order to prevent the adsorption 

phenomenon and consequently reduce membrane fouling which can improve the 

membrane performances significantly. The hydrophilicity of membrane can be 

improvised using various techniques, such blending, chemical grafting, and surface 

modifications (Li et al., 2006). Among these techniques, physical blending with 

inorganic nanoparticles offers more benefits due to average conditions, excellent 

performances and appropriate operations. 

The nanoparticles normally introduced as an additive to the polymer 

membranes are SiO2 (Ochoa et al., 2003), Al2O3 (Zhang et al., 2009), ZnO (Wang et 

al., 2000), and TiO2 (Li et al., 2006). TiO2 has received the most consideration due to 

its stability under stiff conditions, commercial availability, and ease of preparation. 

The effect of other hydrophilic additives, i.e. LiCl and PVP, on the 

thermodynamic/kinetic relations during the phase inversion process in the 

preparation of PVDF-based membranes was investigated by Fontananova et al. 

(2006).  

Blending modification is the most practical way which can be applied to an 

industrial scale production. The hydrophilic PVDF membrane with other desirable 

properties can be obtained simultaneously during the membrane preparation process 

without any pre-treatment or post treatment procedures, which is usually adopted in 

chemical grafting or surface grafting. More importantly, most of the blending 
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modification methods focused on the flat sheet PVDF membranes which limit its 

application in the modification of hollow fiber membrane (Liu et al., 2011). 

Although a large amount of scientific papers have been published, only little 

information was available in the literature for the blending modification of hollow 

fiber PVDF membrane with inorganic particles, titanium dioxide. 

Several research has been reported for the blending modification of hollow 

fiber PVDF membrane with titanium dioxide, however this is limited to the 

application of oily wastewater treatment. Therefore, the current research was 

conducted to explore the possibility and effectiveness of using inorganic nanoparticle 

blending with membrane polymer. Modified polyvinylidene fluoride (PVDF) hollow 

fiber membrane were blended with titanium dioxide nanoparticles which are 

expected to increase the membranes hydrophilicity and emphasize the antifouling 

performances using different molecular weight of organic solution which replicate 

the transport property as NOMs in surface water.  

1.3 Objectives of the Study 

The main aims of this study are to: 

1. To investigate the effects of TiO2 concentration on the structural and physical 

properties of the hollow fiber PVDF membranes. 

2. To investigate the effect of TiO2 concentration on the improvement of 

hydrophilicity of the hollow fiber PVDF membranes. 
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3. To investigate the effect of TiO2 concentration on the antifouling properties and 

the separation efficiency of hollow fiber PVDF membranes under various feed 

molecular cut-off. 

1.4 Scope of Study 

To achieve the above mentioned objectives, the following scopes of study 

were designed. These were divided into three stages and briefly elaborated as 

follows: 

1. The effect of titanium dioxide on formation of hollow fiber membrane. 

The hollow fiber membrane preparation and fabrication were conducted by 

formulating membrane materials and dope preparation (polymer, solvent, additives, 

inorganic nanoparticles). In order to increase the hydrophilicity of membrane, the 

adding nanoparticles will be explored which is known as blending modification 

method. 

2. Membrane filtration measurement and characterization. 

This task involved the characteristics as well as the physico-chemical properties of 

the fabricated hollow fiber membrane. Polyvinylidene fluoride hollow fiber 

membrane was characterized using Scanning Electron Microscopy (SEM), contact 

angles, Differential Scanning Calorimetry (DSC), mechanical strength, porosity as 

well as pure water flux.   
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3. Antifouling, separation and hydrophilicity performance 

The study involved preparation of hollow fiber module and setting up the membrane 

testing rig to determine membrane flux, solute rejection and anti-fouling 

performance. Solute rejection: Polyvinylpyrrolidone (PVP) solution with difference 

molecular weight cut-off. This involves detection analysis using the total organic 

compound analyzer (Shidmadzu) (TOC). Antifouling performance was studied based 

on the membrane flux reduction which to explore the influence of hydrophilic agent 

(nanoparticles) towards before and after solute rejection flux. 

1.5 Significance of Study 

The overall rationale and significance of the current research is to explore the 

formation and development of polyvinylidene fluoride hollow fiber membrane. 

Configuration of hollow fiber membranes has an extra advantage in the higher 

packing density whereas selection of synthetic polymer polyvinylidene fluoride has 

drawn much attraction in comparison with other polymers due for example to good 

resistance to many acids and alkalines, high tolerance towards oxidants, excellent 

mechanical properties, outstanding membrane formation, and great thermal stability. 

Due to the positive outcomes exhibited by hydrophilic membrane ultrafiltration in 

terms of higher permeates flux and rejection, this membrane is a promising technique 

for treating micro pollutant produced from surface water. Most of the current work 

explores the commercially fabricated membranes and flat type configuration 

membranes. 
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