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ABSTRACT 

 
Silicon carbide (SiC) is a semiconductor material which has received a great deal of 

attention due to its outstanding mechanical properties, chemical inertness, thermal stability, 
superior oxidation resistance, high hardness, wide band gap and relatively low weight for 
applications in high frequency and high power systems in extreme environment.  SiC 
particularly amorphous SiC (a-SiC) and polycrystal SiC (pc-SiC) have important roles for 
several applications such as microelectromechanical systems (MEMS) or 
nanoelectromechanical Systems (NEMS), thermoelectric cooling (TEC), optoelectronic 
devices, solar cell or as a substrate for deposition of graphene.  However, the present a-SiC 
and pc-SiC thin film materials are less competitive materials for these applications.  
Previous researchers reported that, scaling down bulk SiC to nanostructure (ns-SiC) has 
shown performance improvement in those applications.  The structure of ns-SiC thin film 
can be either in single crystal, polycrystal or nanocrystal (embedded in amorphous layers) 
forms with layer thickness or grain size in nanometer range.  The conventional plasma 
enhanced chemical vapour deposition (PECVD) technique is mainly needed to grow a-SiC 
or pc-SiC thin film.  High deposition temperature is required in order to improve its 
crystallinity.  However, high deposition temperature would induce thermal stress in 
deposited thin film.  Thus, very high frequency-PECVD (VHF-PECVD) with 150 MHz RF 
was designed and developed in this work based on direct plasma mode with capacitive 
couple discharge (CCD) configuration with the aim to deposit ns-SiC at relatively low 
deposition temperature compared to conventional PECVD.  The plasma profile of argon 
(Ar), hydrogen (H2), silane (SiH4) and methane (CH4) of the system were characterized 
using optical emission spectrometer (OES).  This system is found to be able to fully 
dissociate SiH4 plasma at room temperature.  Meanwhile Ar and H2 mixture with CH4 
plasma is needed for CH4 to fully dissociate at room temperature.  The effects of three major 
parameters, namely the type of dilution gas, CH4 flow rate and RF power on the properties 
of the deposited thin film were investigated.  The formation of ns-SiC crystal structure is 
observed at relatively low growth temperature of about 400 °C.  Nanocrystal formation is 
enhanced when H2 and Ar are added to plasma mixture and the smallest diameter obtained is 
about 1.5 nm.  The trend shows that, the growth mechanism changes from layer-island 
mechanism to layer-layer mechanism and root mean square roughness (Rrms) improves from 
84.43 nm to 0.74 nm when CH4 flow rate is increased.  Single crystal epilayer is successfully 
deposited with a crystal structure assigned as 4H-SiC and confirmed of having 3.26 eV 
optical band gap.  Increasing CH4 flow rate results in the luminescence emission of ns-SiC 
to be shifted from green (~ 518 nm) dominant emission to UV-B (~294 nm) dominant 
luminescence emission.  This indicates that the deposited ns-SiC has potential for 
optoelectronic application in visible light to medium UV range.   
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ABSTRAK 

Silikon karbida (SiC) ialah bahan semikonduktor yang telah menerima banyak 
perhatian kerana sifat mekanikal yang cemerlang, kelengaian kimia, kestabilan terma, 
rintangan pengoksidaan yang unggul, kekerasan yang tinggi, jurang jalur yang lebar dan 
berat yang agak rendah untuk aplikasi dalam sistem berfrekuensi tinggi dan berkuasa tinggi 
dalam persekitaran yang melampau.  SiC terutamanya SiC amorfus (a-SiC) dan SiC 
polihablur  (pc-SiC) mempunyai peranan yang penting untuk beberapa aplikasi seperti 
sistem mikroelektromekanikal (MEMS) atau sistem nanoelektromekanikal (NEMS), 
penyejukan termoelektrik (TEC), peranti optoelektronik, sel solar atau sebagai substrat 
untuk pemendapan grafen.  Walaubagaimanapun, bahan saput tipis a-SiC dan pc-SiC terkini 
ialah bahan yang kurang berdaya saing untuk aplikasi tersebut.  Penyelidik terdahulu 
melaporkan bahawa, mengecilkan SiC pukal kepada SiC nanostruktur (ns-SiC) telah 
menunjukkan peningkatan prestasi dalam aplikasi tersebut.  Struktur saput tipis ns-SiC boleh 
wujud samada dalam bentuk hablur tunggal, polihablur atau nanohablur (terbenam dalam 
lapisan amorfus) dengan ketebalan lapisan atau saiz butiran dalam julat nanometer.  Teknik 
pemendapan wap kimia diperkuat plasma (PECVD) konvensional diperlukan terutamanya 
untuk menumbuhkan saput tipis a-SiC atau pc-SiC.  Suhu pemendapan yang tinggi 
diperlukan dalam usaha untuk meningkatkan penghablurannya.  Namun, suhu pemendapan 
yang tinggi boleh mengakibatkan tegasan terma di dalam saput tipis yang termendap.  Oleh 
itu, frekuensi yang sangat tinggi-PECVD (VHF-PECVD) dengan RF 150 MHz telah direka 
dan dibangunkan dalam kajian ini berasaskan mod plasma langsung dengan konfigurasi 
nyahcas gandingan kapasitif (CCD) dengan tujuan untuk memendapkan ns-SiC pada suhu 
pemendapan yang agak rendah berbanding dengan PECVD konvensional.  Profil plasma 
argon (Ar), hidrogen (H2), silana (SiH4) dan metana (CH4) bagi sistem ini telah dicirikan 
menggunakan spektroskopi pemancaran optik (OES).  Sistem ini didapati dapat memisahkan 
sepenuhnya SiH4 plasma pada suhu bilik.  Sementara itu campuran Ar dan H2 dengan CH4 
plasma diperlukan untuk memisahkan CH4 dengan sepenuhnya pada suhu bilik.  Kesan 
daripada tiga parameter utama iaitu jenis gas pencairan, kadar aliran CH4 dan kuasa RF 
terhadap sifat saput tipis yang dimendapkan telah diselidik.  Pembentukan struktur hablur 
diperhatikan pada suhu pemendapan yang rendah kira-kira 400 °C.  Pembentukan 
nanohablur meningkat apabila H2 dan Ar ditambah kepada campuran plasma dan diameter 
terkecil diperolehi ialah kira-kira 1.5 nm.  Arah aliran menunjukkan bahawa, mekanisma 
pertumbuhan berubah daripada mekanisma lapisan-pulau kepada mekanisma lapisan-lapisan 
dan kekasaran punca min kuasa dua (Rrms) telah diperbaiki daripada 84.43 nm kepada 0.74 
nm apabila kadar aliran CH4 dipertingkatkan.  Lapisan berhablur tunggal telah berjaya 
dimendapkan dengan struktur hablur boleh diumpukkan sebagai 4H-SiC dan disahkan 
mempunyai 3.26 eV jurang jalur optik.  Peningkatan kadar aliran CH4 menghasilkan 
pancaran pendarcahaya untuk ns-SiC telah beralih daripada pancaran hijau (~ 518 nm) yang 
dominan kepada pancaran pendarcahaya UV-B (~ 294 nm) yang dominan.  Ini menandakan 
ns-SiC yang dimendapkan mempunyai potensi untuk aplikasi optoelektronik dalam julat 
cahaya nampak hingga UV sederhana. 
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CHAPTER 1  

INTRODUCTION 

1.1 Background of Problem 

 Since the first illuminating talk on nanotechnology by Richard Feynman, 

nanoscience and nanomaterial become one of the most fastest grown research field 

in the world [1].  The purpose of nanoscience is to understand the behavior and 

properties of material at nano scale or near atomic scale and to explore its potential 

in nanotechnology field.  Most of the studies have shown that enhancement in 

physical properties occur when the material scale down to nano size [2] [7]. 

Recently, requirement of nanomaterial electronics devices for application in 

extremes environment such as high temperature, high corrosion, high 

electromagnetic radiation, and high nuclear radiation make it compulsory to use 

special material as a based material in such extremes condition.  Silicon carbide 

(SiC) is an emerging semiconductor material which has received a great deal of 

attention due to its application in high frequency and high power systems.  SiC has 

been recognized for several decades as a promising materials to be applied in 

extreme environment due to its outstanding mechanical properties, chemical 

inertness, thermal stability, superior oxidation resistance, high hardness, wide band 

gap and relatively low weight [1], [8] [11].  Due to its large energy band gap (Eg) 

material, SiC can minimize the effect of minority carrier when operate at high 

temperature [12] compare to lower band gap material such as Si.  
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SiC has gained important role for several applications in the optoelectronic 

devices [11], [13], [14] such as light emitting diode (LED), electroluminescent 

devices [15], micro and nanoelectromechanical system (MEMS and NEMS) sensors 

fabrication [10], [16] and also thermoelectric cooling (TEC) devices for deployment 

in extreme environments [17] and as biocompatible materials in blood-contacting 

implants and biomedical devices [18].  But until recently the low material quality has 

limited the fabrication of high quality devices [19]. 

First laboratory single crystal SiC has been produced by Achenson in 1892 as 

a byproduct from abrasives manufacturing industry.  In 1955, Lely have grown SiC 

single crystal by sublimating polycrystalline SiC powder and this method known as 

Lely method [10].  This method then improved by Tairov and Tsvetkov from Russia 

in 1987,  SiC 

on off- -

[15], [20]. 

Today, thin film or epitaxy SiC has been discovered deeply by researcher.  

To produce SiC wafer from bulk single crystal SiC (sc-SiC) is very challenging due 

to difficulty to get good single crystal growth without defect and contamination.  

Defect normally will result grain boundary in the crystal which have a lot of 

significant effects on the mechanical, physical and electrical properties of materials 

[21].  SiC sublimation temperature which is about 2500 °C makes it not very suitable 

for mass production.  However epilayer SiC is much easy to be prepared compare to 

crystal growth technique.  In industry, SiC electronic devices are fabricated in higher 

quality SiC thin film.  The structure of SiC thin film can be crystal, amorphous or 

polymorphous depending on the application need.  Well grown SiC film reported to 

have superior electrical properties [10].  It can be growth at lower temperature [22], 

impurity can be controlled and reproducible, practical for mass production [23], 

suitable for large area deposition [10] and possible to obtain high quality 

homoepitaxy [24].   

There are several common preparation methods and different gases have 

been used to synthesize SiC thin films to obtain desired physical and electronic 
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properties. For gas to solid approach, basically these methods can be classified as 

physical vapour deposition (PVD) and chemical vapour deposition (CVD). In PVD 

method, the film growth when the Si and C atoms sputtered from SiC target after hit 

by high energy gas species like argon (Ar) ion. The sputtered atoms then travel and 

deposited on the substrate.  These common growth techniques are including hot wall 

CVD (HWCVD), plasma enhanced CVD (PECVD), electron cyclotron resonance 

CVD (ECR-CVD), magnetron sputtering, pulsed laser deposition (PLD), ion 

implantation, and molecular beam epitaxy (MBE) [8], [25]. 

For the source of Si precursors, usually preferred gases are silane (SiH4), 

disilane (Si2H6), and tetrachlorosilane (SiCl4), and for the source of C precursors 

methane (CH4), acetylene (C2H2), propane (C3H8), methylbenzene/toluene (C7H8), 

hexane (C6H14), methyl chloride (CH3Cl), carbon tetrachloride (CCl4), and other 

gases have been used for making these films. Various organometallic precursors 

such as dimethylsilane [(CH3)2SiH2, DMS], tetramethylsilane [(CH3)4Si, TMS], 

methyltri-chlorosilane [CH3SiCl3, MTS], and hexamethyldisilane [(CH3)6Si2, MDS] 

have been also used as single-source system to reduce the growth temperature of 

SiC:H films. Hydrogen and argon are commonly used as carrier/diluter gas [8], [22], 

[23], [26]. 

PECVD have advantage over HWCVD (or in general called CVD) because 

this method can be a solution when lower temperature deposition and or residual 

stress control is required [25]. However, common thin film growth technology like 

conventional 13.56 MHz radio frequency (RF) PECVD thin film deposition 

technique generally produced amorphous and poly-crystalline SiC type of film [17], 

[19], [27]. Amorphous (a) and poly-crystalline (pc) of bulk SiC film are less 

competitive material for applications such as MEMS/NEMS, TEC, optoelectronic 

devices and solar cell.  a-SiC and pc-SiC have low mechanical quality factor Q result 

from high internal loss which not suitable for MEMS/NEMS.  TEC have a material 

requirement of low thermal conductivity and high electrical conductivity to enhance 

it figure-of-merit value (Z) which represents TEC efficiency.  Thermal conductivity 

on the other hand can effectively reduce by increasing phonon scattering and carrier 

scattering in film.  Thermal conductivity is dependent on film structure, the grain 
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size and also alloys disorder in the film [12].  Effect of grain size and grain boundary 

in ns-SiC is also predicted to have higher efficiency if applied as TE material [28], 

[29].  Electrical conductivity of thin film can be increased by introducing dopant in 

the deposited film [30].  ns-Si and ns-SiC matrix also reported to have better 

efficiency if applied in solar cell devices and optoelectronic devices such as LED 

and photodiode [6], [30] [34].     

Several researchers have reported of using higher RF frequency for PECVD 

in order to produce better SiC thin film and ns-SiC at low temperature.  PECVD 

which using RF which higher than 13.56 MHz is categorized as very high frequency 

PECVD (VHF-PECVD). It is well know that PECVD with high excitation frequency 

have some advantage over conventional PECVD such as high deposition rate, 

offering good quality film with less defect, higher electron density, lower plasma 

potential and less reduced ion bombardment effect compared to the 

conventional[35].  Previous researcher report on obtaining amorphous hydrogenated 

SiC (a-SiC:H) at temperature below 250 [36], 70 MHz [37] 

and 100 MHz [38] radio frequency.  Miyajima and several other researcher report on 

growth of nanocrystalline cubic SiC (nc-3C-SiC) by using 60 MHz RF with 

substrate temperature 360 [32], [34], [39] [41].  Table 1.1 shows summary of 

reported work by previous researcher on the fabrication SiC thin film using VHF-

PECVD technique and the result obtained by them. 
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1.2 Problem Statement 

SiC has gained important role for applications in the optoelectronic devices 

[11], [13], [14], electroluminescent devices [15], MEMS and NEMS sensors 

fabrication [10], [16], TEC devices for deployment in extreme environments [17], as 

biocompatible materials in blood-contacting implants and biomedical devices [18].  

But until recently the low material quality has limited the fabrication of high quality 

devices [19]. Conventional PECVD techniques are generally needed to grow a-SiC 

and pc-SiC thin film [17], [19], [27].  The present a-SiC, and pc-SiC thin film 

material are less competitive material for applications in MEMS/NEMS, TEC, 

optoelectronic devices, solar cell or as a substrate for deposition of graphene.  

However, high temperature deposition is required in order to improve of films 

crystallinity but this technique have lower deposition rate [47] .  a-SiC and pc-SiC 

have low mechanical quality (Q factor) result from high internal loss which not 

suitable for MEMS/NEMS compare to sc-SiC.  TEC have a material requirement of 

low thermal conductivity and high electrical conductivity to enhance it figure-of-

merit value (Z) which represents it efficiency.  Thermal conductivity can effectively 

reduce by increasing phonon scattering and carrier scattering in film [12].  Effect of 

grain size and grain boundary in ns-SiC thin film was reported of gaining higher 

TEC efficiency [28], [29].  Electrical conductivity of ns-SiC thin film can be 

increased by introducing dopant material [30].  Solar cell devices and optoelectronic 

devices of ns-SiC base was reported to have better performance than bulk-SiC base 

devices [6], [30] [34].  Thin film based on ns-SiC is required in order to meet 

nowadays applications.  Although, a few research group were success to produce ns-

SiC and nc-SiC thin films such as Miyajima et. al., Hamashita et. al. [32], [34], [46] 

and Schmittgens et. al. [40], however none was reported fabricating it by using RF-

PECVD with the frequency higher than 100 MHz with SiH4 and CH4 precursor at 

low temperature.  VHF-PECVD with 150 MHz radio frequency was reported to 

successfully growth nc-Si at low temperature using SiH4 precursor [35], [48], [49].  

It is expected that ns-SiC thin film also can be grown using VHF-PECVD with this 

excitation frequency.  Most of the studies are focused on to improve SiC thin film 

crystal quality by manipulating deposition condition.  Deposition parameter such as 

type of gas dilution, CH4 flow rate and RF power for ns-SiC in this VHF range not 
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reported yet and it is expected to be different with the deposition parameter in lower 

RF frequency.  There are still unrevealed relationship of above deposition parameter 

to the properties of the deposited ns-SiC such as morphology, topology, structural, 

crystal phase and chemical state composition within this range. 

 

1.3 Research Objectives 

 The aim of this study is to deposit ns-SiC at relatively low temperature 

compare to conventional PECVD technique by using SiH4 and CH4 as precursors.  

To achieve this aim, this study embarks on the following objectives: 

1) To design and  develop VHF-PECVD system with 150 MHz radio 

frequency excitation for ns-SiC thin film deposition. 

2) To characterize and optimize the developed system using various gases 

and plasma condition. 

3) To determine the deposition parameter to obtain ns-SiC thin film. 

4) To validate the formation of ns-SiC by the structural, chemical state, 

luminescence and morphology properties characterization. 
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1.4 Research Scope 

 To achieve above objectives, the following studies must be carried out in this 

research: 

1) Vertical asymmetry capacitive couple discharge (CCD) configuration for 

direct plasma mode with 150 MHz radio frequency excitation were 

applied in designing and developing VHF-PECVD system. 

2) Optical emission spectroscopy (OES) was used to characterize individual 

plasma profile of SiH4, CH4 and H2 at different gas flow rate, 

temperature, RF power and gas mixture ratio. 

3) Deposition parameter for type of dilution gas, CH4 flow rate and RF 

power were determined prior to ns-SiC thin film deposition. 

4) Scanning electron microscope (SEM), scanning probe microscope (SPM) 

and x-ray reflectivity (XRR) were used to investigete the morphology, 

topology and thickness of the deposited thin film respectively. 

5) The structural properties of deposited thin film were characterized using 

infrared (IR) spectroscopy and Raman spectroscopy. 

6) Elements distribution and chemical state analysis were investigated using 

electron energy loss spectroscopy (EELS) and x-ray wavelength 

dispersive spectroscopy (WDS) respectively. 

7) Photoluminescence spectroscopy was used to investigate the 

luminescence properties of deposited thin film. 
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1.5 Significant of study 

 There are several significant of this study: 

1) New design of VHF-PECVD system to deposite ns-SiC film over large 

areas of substrate for semiconductor and coating application was 

successfully developed.  Deposited ns-SiC thin film is expected to 

possess lower grain and structure size, lower surface roughness and 

better luminescence properties as well as preserving the superior physical 

properties to be applied in harsh environment. Nano-sized grain of the 

crystallites, grain boundary effect and quantum effect are the main 

characteristics of nc-SiC structure which expected to contribute to the 

above improvement. 

2) The characteristic of plasma profile for developed system is obtained and 

the existence of reactive species in the plasma at measurement condition 

can be used to relate it with the deposited film. 

3) The effect of deposition parameter such as type of dilution gas, CH4 flow 

rate and  RF power to the morphology, topology, thickness, structural, 

crystall phase, elements distribution, chemical state composition and 

luminescence properties of the deposited SiC thin film can be used to 

obtain the desire thin film properties in the future for application in 

specific field. 
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