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ABSTRACT 

The most usual way of protecting crop from diseases is by using chemical 

method whereby mixture of chemicals and water are sprayed onto crop via nozzles. 

These nozzles are located consistently along a boom structure oriented perpendicular 

to the direction of motion to cover large areas.  The most important factor on spray 

distribution pattern is spray boom vibration. Thus, suspension control aims to 

attenuate the unwanted vibration and should provide improvements in term of 

distribution uniformity.  In this study, a combination of passive and active 

suspension was considered to create superior performance.  A passive suspension 

was employed to control undesired vertical motion of sprayer boom structure while 

the roll movement of spray boom was reduced via active suspension.  The active 

suspension system of sprayer was implemented by applying robust active torque 

control (ATC) scheme that integrates artificial intelligence (AI) methods plus another 

feedback control technique utilizing proportional-integral-derivative (PID) control.  

The proposed control system basically comprises of two feedback control loops; an 

innermost loop for compensation of the disturbances using ATC strategy and an 

outermost loop for the computation of the desired torque for the actuator using a PID 

controller.  Two AI methods employing artificial neural network (ANN) and iterative 

learning (IL) were proposed and utilized to compute the estimated inertial parameter 

of the system through the ATC loop.  The research proposes two main control 

schemes; the first is a combination of ATC and ANN (ATCANN) while the other is 

ATC and IL (ATCAIL).  The suspension system was first modeled and a number of 

farmland terrains were simulated as the main disturbance components to verify the 

robustness of the system and sprayer boom dynamic performance related to 

distribution uniformity.  The simulation results both in frequency and time domains 

show the effectiveness of the proposed ATC schemes in reducing the disturbances 

and other loading conditions. The control schemes were further implemented 

experimentally on a developed laboratory spray boom suspension test rig.  
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ABSTRAK 

Cara yang paling biasa untuk melindungi tanaman daripada penyakit adalah 

dengan menggunakan kaedah kimia yang mana campuran bahan kimia dan air 

disembur ke tanaman melalui muncung.  Muncung ini terletak konsisten sepanjang  

struktur galang berserenjang dengan arah gerakan untuk meliputi kawasan yang 

besar.  Faktor yang paling penting untuk menghasilkan corak taburan semburan ialah 

getaran galang penyembur.  Oleh itu kawalan suspensi bertujuan untuk 

mengurangkan getaran yang tidak diingini dan harus menyediakan penambahbaikan 

dari segi keseragaman pengagihan.  Dalam kajian ini, gabungan suspensi pasif dan 

aktif diguna untuk menghasilkan prestasi yang memuaskan.  Suspensi pasif 

digunakan untuk mengawal gerakan menegak yang tidak diingini oleh  struktur 

galang penyembur manakala pergerakan olengan galang penyembur telah 

dikurangkan melalui suspensi aktif.  Sistem suspensi aktif penyembur dilaksanakan 

oleh skim kawalan daya kilas aktif (ATC) yang lasak dengan mengintegrasikan 

kaedah kecerdikan buatan (AI) dengan teknik kawalan suap balik iaitu gelung 

kawalan berkadaran-kamiran-terbitan (PID).  Sistem kawalan yang dicadangkan 

terdiri daripada dua gelung kawalan suap balik; gelung dalaman untuk pampasan 

gangguan menggunakan strategi ATC dan gelung luaran untuk pengiraan daya kilas 

kehendak untuk penggerak yang menggunakan pengawal PID.  Dua kaedah AI 

menggunakan rangkaian neural tiruan (ANN) dan lelaran pembelajaran (IL) telah 

dicadangkan dan digunakan untuk mengira anggaran parameter inersia sistem 

melalui gelung ATC.  Kajian ini mencadangkan dua skim kawalan utama, yang 

pertama gabungan ATC dan ANN (ATCANN) manakala yang lain adalah ATC dan 

IL (ATCAIL). Sistem suspensi perlu dimodelkan terlebih dahulu dan beberapa profil 

permukaan tanah pertanian telah disimulasi sebagai komponen gangguan utama 

untuk mengesahkan kelasakan sistem dan prestasi dinamik penyembur galang yang 

berkaitan dengan keseragaman pengagihan.  Hasil kerja simulasi dalam kedua-dua 

domain masa dan frekuensi menunjukkan keberkesanaan skim ATC yang 

dicadangkan dalam mengurangkan gangguan dan keadaan bebanan berlainan.  

Skema sistem kawalan ini seterusnya diimplementasi secara amali pada sistem 

suspensi penyembur galang yang dibangunkan di makmal.   
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CHAPTER 1 

INTRODUCTION 

1.1    Introduction to Crop Protection 

When human life changed from hunting and immigrating to settle down and 

start to farm, one of the serious problems was crop protection.  Nowadays, 

agriculture productions are counted on main source of nutrition, and crops must be 

protected against animals, pathogens, weeds, pests, insects, and diseases. 

1.1.1    The Use of Pesticides and Poisons in Field 

Crop protection techniques have five major types: mechanical, chemical, 

biophysical, biological, and agronomical methods.  Chemical methods are employed 

widely and in this method, chemicals are dissolved in water and spread by sprayer.  

Chemicals have many various kinds such as insecticides, fungicides, herbicides, and 

others that are many useful, and sometimes those are preventable for crop protection 

against critical risk.  Besides, chemical method is ideal for conventional agriculture 

methods because it needs less labor, and distribution is easy.  Although spray 

application is effective to solve problems of weeds, pests and disease in field, the use 
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of chemicals treatment has side effects, and care must be taken when applying them.  

Sometimes under dose is not absolutely effective on crop yield whereas overdose has 

environmental pollution and poisonous remains in water, air, soil, and food 

(Langenakens et al., 1999).  Residual poisonous threats the environment and 

humankind for many years later.   

These threats and high expense of the chemical have economic consequences 

and pressure on farmers and governments to reduce the amount of chemicals 

materials applied in the farms.  However, under dose of chemical materials leads to 

negative effect on crop yield and some farmers usually apply too much chemicals to 

maximize crop yield (Ozkan and Reichard, 1993).  Thus, it is important to control the 

amount of chemical used and one way is to ensure correct and consistent amount of 

spray distribution of chemical (Alness et al., 1996).  

There are two imperative reasons for under dose and overdose in the field.  

First, defects in hydraulic system such as leaking hoses, worn nozzles, 

malfunctioning of manometers or pumps, connections, and others.  Second, vertical 

and horizontal vibrations when sprayer boom is moved on the unsmooth fields 

(Langenakens et al., 1999).  In addition to spray boom vibration, the wind affects 

uneven doses in the field (Langenakens et al., 1995).  Therefore, one of the crucial 

factors for reduction of pesticide consumption in field is the decrease of sprayer 

boom vibration (Anthonis and Ramon, 2003).      

1.1.2    Sprayer Boom Vibrations 

The most usual way of using chemical method to protect crop is spraying the 

mixture of chemicals and water onto crop by nozzles.  The nozzles are located on a 

horizontal frame which named boom and are moved slowly on the field.  The 
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sprayers which are based on propulsion factor have three models: tractor-mounted, 

self-propelled, or trailed.  All of them contain horizontal boom, large tank, hoses, and 

pump that pumped the mixture of chemicals and water from tank to sprayer nozzles. 

Nozzles of sprayers have a distribution pattern that the uniformity of that is 

influenced by several factors:  

 Type and quality of nozzle 

 Distance of nozzle to plant leaves 

 Distance between nozzles on the boom 

 Travel speed of sprayer 

 Pressure perform on poison liquid  

 Flow rate  

 Wind 

 Air assistance  

Three types of nozzles are applied on the booms: hollow cone, full cone, and 

flat fan nozzles.  They have a number of differences like as pressure for atomizing of 

liquid, flow rate, place of nozzle connection to the boom, and uniformity of 

distribution pattern.  Typically the tip of nozzles is used up or closed, and this fact 

affects on distribution.  Besides, when droplets go down from the nozzles, they are 

influenced by wind flow which can be decreased by use of air assistance.  Air 

assistance generates the air flow by a blower and conducts the droplets downward to 

plant leaves.       

The main procedure for evaluation of spray application is spray distribution 

test (Göhlich, 1985).  Several factors affect spray distribution pattern, namely, the 

soil unevenness, spray boom width, the type of suspension system, perfect 

connection between spray boom and tractor, the amount of poison and liquid inside 

the tank, the straight driving speed in field, and sprayer general conditions (Pochi and 
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Vannucci, 2001, 2002a; Ramon & Langenakens, 1996).  One of the crucial effects on 

the spray distribution is the nozzle movements which mostly induced by soil 

unevenness.  For instance, cone nozzle shows more response to the vertical 

movement; in comparison, the flat fan nozzle is a little responsive to the horizontal 

movement.   

The influences of sprayer motions are optimized with use of springs and 

dampers.  The boom motions and spray distribution can be controlled by adjusting 

the spring and damper parameters.  

1.2    Background of the Research 

Presently, field sprayers’ width is raised to 45 m because fields are getting 

larger and work labor is expensive; therefore, the farmers require the agriculture 

instruments that covered more area in every traveling in the field (Serneels & 

Decattillon, 1993).  But after these developments, flexible behavior of sprayer booms 

is crucial, and each motion of the boom leads to the movement on the tip of nozzles.  

Thus, the uniformity of distribution pattern will change.  Another aspect is width of 

sprayer boom although obvious relationship between amount of sprayer boom 

movement and width of boom is not specified yet now.  Mounted or trailed sprayer is 

another important factor (Herbst & Wolf, 2001).  The most important factor on spray 

distribution pattern that were illustrated by theoretical researches, field experiments 

and simulations is sprayer boom vibration which must be controlled.  The reported 

movements that can affect the spray distribution pattern (Figure 1.1) are jolting and 

yawing (two kinds of motion in the horizontal plane), and rolling that due to spray 

boom vibration in the vertical plane (Anthoni et al., 2005) that will be shown by 

detail in Figure 2.3.  Vertical vibration, rolling and yawing of sprayer boom are 

resulted of tractor vibration that induced by soil surface unevenness.  One of the 

earliest studies about effects of tractor rolling on sprayer boom distribution pattern 
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was done by Mahalinga Iyer and Wills in 1978.  Later, sprayer boom suspension has 

been initialized in practice to decline these influences (Nation, 1980). 

 

Figure 1.1    Effective movements on the spray distribution pattern (rolling, yawing, 

and jolting) (Anthoni et al., 2005) 

Ramon and Langenakens (1996) mentioned that vertical flexible 

deformations of the sprayer boom are excited by vertical acceleration and rolling 

angular of the tractor.  These deformations have less effect on the spray pattern 

because they are neutralized by the structure of boom frame.  Moreover, they 

expressed horizontal flexible deformations of the spray boom are caused by yawing 

angular accelerations and transversal accelerations of the tractor.  Field experiments, 

theoretical studies and simulation demonstrated that spray distribution pattern is 

different between 0 and 800% (Sinfort et al., 1997; Ramon and De Baerdemaeker, 

1997; Ramon et al., 1997; Ooms et al., 2002).  Field measurements (Speelman, 

1974) and simulations with experimental modal models of different spray booms 

(Langenakens et al., 1993) illustrated under dose and overdose are caused by 

horizontal vibration of spray boom, and it can be varied from 20 to 600%.  Other 

simulating models also describe differences in spray deposit distribution between 

20% and 600% for the horizontal vibration and between 0% and 1000% for the 

vertical vibration (Langenakens et al., 1995). 

As stated earlier, to control undesired vertical and horizontal vibrations of 

sprayer booms, suspension systems have been used to keep the boom stable by 

isolating the boom frame from the yawing and rolling movements of sprayers.  The 
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common suspensions which are located between the boom and the frame, isolate the 

boom from the sprayer frame rolling although some of these suspensions which are 

located between the frame and the wheel axle have especially design.  Recently 

horizontal suspensions are applied to attenuate effect of the frame jolting and yawing 

motions on boom (Ooms et al., 2002).     

From 1980s twin link or pendulum suspensions have been applied to explain 

dynamic behavior of sprayer booms until recently when Anthonis et al. (2000) 

introduced horizontal active suspension.  

Although large number of suspensions has been made by manufacturer, some 

of them are based on theoretical researches (Frost, 1984; O’Sullivan, 1986; Nation, 

1987a & 1987b; O’Sullivan, 1988; Frost & O’Sullivan, 1988; Ramon & De 

Baerdemaeker, 1995; Deprez et al., 2002).  Anthonis and Ramon (2003), based on 

theoretical and experimental research, believed that horizontal vibrations (yawing 

and jolting) are more critical than vertical vibration (rolling) in the same condition 

(Ramon & De Baerdemaeker, 1997).  Though horizontal spray boom vibration is 

more important on spray distribution efficiency (Wolf, 2002; Ramon & De 

Baerdemaeker, 1997), Anthoni et al. (2005) investigated rolling as more effective 

vibration on spray distribution pattern.  They illustrated that the vertical suspension is 

still challenging. 

Normally, two kinds of suspensions are used to attenuate the unwanted 

vibration in spray booms, which are passive and active suspensions.  A passive 

suspension system consists of damper and spring as dissipating element and energy-

storing element, respectively.  In this model suspension, the characteristics of the 

components (springs and dampers) are fixed because these characteristics are 

determined by the designer of the suspension, based on the design goals and the 

intended application.  The active suspension system uses an actuator, power supply, 

signal processing and proximity transducer, amplifier and feedback components to 
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reduce the amount of external power necessary to achieve the desired performance 

characteristics.  However, the usage of these components leads to a complex system.  

Since the sprayers are excited by low and high frequency vibrations, a combination 

of passive and active suspensions is capable to reduce the unwanted motions of 

sprayers.  In general, the conventional controllers, such as proportional (P), 

Proportional-Integral (PI), Proportional-Derivative (PD), and Proportional-Integral-

Derivative (PID) controllers, are employed in the active suspensions to control the 

system vibration (O’Sullivan, 1988, 1986; Frost and O’Sullivan, 1988).          

Finding the mathematical model of the system to design a controller is one of 

the important characteristics of all conventional controllers although unconventional 

controllers apply new approaches to the controller design such as neuro or neuro-

fuzzy controllers, and fuzzy controller.  Previously, a P and PI controllers 

(O’Sullivan, 1988, 1986; Frost and O’Sullivan, 1988), an active compensator 

(Ramon and Baerdemaeker, 1996), and a SVD H
∞ 

(Singular value decomposition 

infinite Hankel matrix) method (Anthonis and Ramon, 1999) were applied to control 

the vibration of sprayers.  

Recently, active suspension systems of vehicles have been implemented by a 

new method named active force control (AFC) (Mailah & Priyandoko, 2007; 

Priyandoko et al., 2009a; Alexandru and Alexandru, 2010; Rajeswari, 2010) whereas 

this idea was firstly introduced by Hewit and Burdess (1981).  The aim of the study 

is an attempt to introduce a new robust control strategy of a suspension system that is 

based on active torque control (ATC) approach which the concept of that was 

derived from AFC theory.  The purpose of this control scheme is to ensure that a 

system remains stable and robust even in the occurrence of disturbances.  Informally, 

a controller designed for a particular set of parameters is said to be robust if it would 

also work well under a different set of assumptions.  The original theory of ATC 

involves direct measurement and estimation of a number of known parameters to 

forecast its compensation action that is the actuated torque, angular acceleration and 

estimated mass inertia of the spray boom in this research.  As the estimated mass 

moment of inertia of sprayer boom multiplies to angular acceleration of boom, the 
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main computational part in ATC is estimation of mass moment of inertia.  Firstly, 

usage of artificial intelligent (AI) techniques to estimate the inertia of the system in 

real time was introduced by Mailah (1998). 

1.3    Statement of Problem 

From the review of reported investigations discussed above, clearly vibration 

of spray boom affects on the spray distribution pattern and hence the crop yield.  

Since most of the tractors do not have a chassis suspension system, the vibration is 

transmitted directly from the chassis to sprayer boom due to unevenness of soil.  This 

induced vibration can produce serious problems in spray distribution pattern such as 

overdose and underdose.  Two types of vibration, namely, low frequency and high 

frequency, have effects on sprayer boom structures.  The suspension systems must 

have an appropriate response time to the vibration variability.  Although many 

suspensions have been previously devised for sprayer boom structures, it is still an 

open area of research due to the complex dynamics of flexible structures.  Generally, 

passive suspensions are designed for fixed working conditions, and changing their 

characteristics is not simple for new condition.  In contrast, active suspensions have 

adaptation potential to change suspension coefficients in real time adequately.  The 

combination of active and passive suspensions is able to create superior performance 

to control unwanted vibration.  Up till now, some conventional controllers were used 

in active sprayer boom suspensions.  Additionally, since sprayer booms are weakly 

damped flexible structures with large dimensions, it is appropriate to test the 

sensitivity of the designed feedback systems to unmodeled high frequency modes 

and parameter variations before implementing them on the physical system.  

Lately, AFC approach was considered by many researchers (Hewit and 

Burdess, 1981; Mailah, 1998; Kwek et al., 2003; Mailah et al., 2005) due to its 

attributes such as simplicity, robustness, and high accuracy compared with 
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conventional methods in controlling dynamical systems.  The suspensions 

implemented by AFC systems can overcome on disturbances better compared to 

conventional controllers.  Besides, using intelligent methods for predicting mass 

moment of inertia can enhance the efficiency of this type of controllers.      

This study serves to present other alternatives to cope with the vibration 

control problem of the sprayer structures.  Thus, the research should investigate the 

possibility of improving the sprayer suspension dynamic performance using a robust 

control strategy including intelligent method.  The main works of this study contain 

the design of the proposed controller based on a number of established control 

models, choice of the actuator system, AI method and a number of loading 

conditions.         

1.4    Objectives of the Study 

The main objective of this study is to investigate the suitability of intelligent 

control scheme in reducing low frequency vibration of the agriculture sprayer boom.  

To accomplish this objective, the following sub-objectives are defined:  

 To present the mathematical model of the sprayer boom dynamical 

behavior. 

 To design and analyze the implementation of artificial neural network 

(ANN) and iterative learning (IL) techniques for the computation of the 

estimated inertial parameter in the ATC scheme to improve the 

performance of the sprayer boom active rolling suspension system by 

simulation study. Governing  

 To evaluate and validate the performance of the ATC- based controller for 

the active rolling suspension system and passive suspension through 

experimental study. 
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1.5    Scope of the Study 

The scope of research consists of the following: 

 A tractor mounted sprayer boom is considered to operate using a 

suspension, and it is assumed that the chassis of the sprayer boom can 

move in vertical direction.  

 Initially, the optimal vertical passive suspension parameters for sprayer 

boom structure was determined.  

 The spray boom is considered as a rigid body component and revolves 

around a longitudinal axis because it is pivoted at the center point.  The 

effect of the dynamics due to the masses of the nozzles located along the 

boom was neglected because the nozzle mass is very small compared to 

the spray boom mass.  Also, as the nozzles are assumed to be arranged 

symmetrically on the boom, the thrust forces were neglected assuming a 

well balanced system.   

 The source of vibration in tractor and sprayer boom is the unevenness 

surface of field.  

 The theoretical framework includes the study of different principles 

related to the ATC-based methods, proportional-integral-derivative (PID) 

control, the neural network (NN) and the iterative learning (IL) 

techniques. 

 The performance of the passive suspension system exposed to various 

field surfaces or farmland terrains will be evaluated based on vertical 

sprayer acceleration.  Moreover, the performance of active rolling 

suspension will be studied based on rotational sprayer boom acceleration.  

Results shall be presented and analyzed both in time and frequency 

domains.  

 The physical structure of the test rig need to be constructed in laboratory 

scale and mechanical characteristics which are required for suspension 

design and simulation shall be considered from the developed test rig.  
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 In the experimental works, only ATCAIL scheme is considered for the 

validation. 

1.6    Contributions of the Research 

The main research contributions from this research are as follows: 

1. Two new robust ATC-based control schemes have been proposed, 

designed and implemented for the control of a sprayer boom suspension 

using ATCANN and ATCAIL.  

2. Novel approximation techniques using ANN and IL methods were 

employed to compute adaptively and continuously the suitable estimated 

mass moment of inertia of the dynamic system in the ATC loop for the 

control of the active rolling suspension to improve the performance.  

3. A fully instrumented sprayer boom experimental test rig was developed in 

the laboratory for the experimental validation of the theoretical 

component.  

1.7    Organization of the Thesis 

This thesis is organized into six chapters.  A brief outline of contents of the 

thesis is given as follows:  
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Chapter 1 describes an overview of the context of crop protection and sprayer 

boom vibration.  It involves the statement of problem and objectives of this research 

too.  

In chapter 2, a comprehensive survey of the theoretical and experimental 

works related to the proposed research is described. Some brief explanation on 

suspension systems and isolators and reviews on recently published articles related to 

application of the active force control strategy are also highlighted. 

Chapter 3 is devoted to the methodology of the research.  Basically, there are 

two main research activities to be achieved, the theoretical modeling and design of 

the passive suspension system based on experimental data and the experimental 

implementation of the identified approaches for evaluation purpose.    

Chapter 4 focuses firstly on the basic concepts and fundamental theories of 

the ATC scheme, ANN, and IL methods.  Subsequently, the simulation study of the 

new proposed schemes, i.e., ATCANN and ATCAIL is presented.  The general 

proposed ATC-based system basically comprises two feedback control loops, 

namely, innermost loop for the compensation of the disturbances using ATC strategy 

and an outermost loop for the computation of the desired torque for the actuator 

applying a PID controller.  Performance of the suspension system is evaluated based 

on the desired sprayer boom angular position, both in time and frequency domains.  

The results of the proposed schemes are also shown and compared.   

Chapter 5 presents the mechatronic design and development of the 

experimental sprayer boom structure test rig that incorporates the proposed ATCAIL 

scheme.  An electromagnet shaker is used to excite the structure.  The specifications 

of the active rolling suspension system, PC-based control system and its 

instrumentation system are expressed in detail in this chapter.  The performance of 
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the control approach is validated via experimental measurements in which the 

ATCAIL scheme result is compared to the PID controller.  The experimental results 

are depicted both in time and frequency domains and they were compared to the 

simulation work findings.  

Chapter 6 sums up the study project. The directions and recommendations for 

future works are also listed.  Some experimental results, instrumentation 

specification and list of publications related to this research are enclosed in the 

appendices. 
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rolling suspension of spray boom was built up based on mechatronic design 

approach.  A precision servomotor was used as an actuator controlled by pulse 

frequency technique.  The computer control involving the programming of the data 

acquisition (DAQ) system using LabVIEW software was carried out to command the 

actuator in relation to the needed task via the proposed ATCAIL control scheme.  

The test rig was experimented in laboratory environment by simulated terrain 

profiles produced via shaker.  The results of active rolling suspension implemented 

by ATCAIL and ATC-PID, and PID control systems were acquired and compared 

together.  The findings reveal that applying ATCAIL scheme can cause vibration 

cancelation improvement in both time and frequency domains, thus guaranteed a 

more uniform spray deposit on a bumpy field.  Finally, the experimental study 

outcomes have a good agreement with simulation work results. 

6.2    Recommendations for Future Works  

A number of suggestions proposed for further works that may improve the 

distribution pattern uniformity of sprayers during field operation are outlined as 

follows: 

 Several numbers of frequencies, other various external disturbances, and 

other terrain profiles especially random signal should be tried to investigate 

the system performance in wake of horizontal vibration.     

 An experimental research can be performed by shaking the tractor-sprayer 

boom in laboratory to analyze the movements of spray boom via developed 

suspension.   

 The performance of current active suspension can be measured in outdoor 

test, and finally it should be tried to employ on real size sprayer. 
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