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ABSTRACT 

 

 

 
Interface shear strength between two concrete layers cast at different times plays an important 

role to develop composite action of the floor slabs. Most previous studies when quantifying 

interface shear strength for interface concrete with projecting steel did not take concrete 

cohesion into consideration. In contrast, interface concrete without projecting steel depended 

solely on concrete cohesion in quantifying the interface shear strength. Although there are 

studies conducted on the action of interface shear strength under variable normal stresses, the 

findings only considered smooth or left “as-cast” surface. Furthermore, Finite Element 

Modeling (FEM) of the interface shear behavior for concrete-to-concrete bond is also limited 

in research. In this study, a total of 72 “push-off” tests were carried out to study the interface 

shear strength of composite slab with six different surface textures. This included smooth or 

left “as-cast”, roughened by wire-brushing in the longitudinal and transverse direction, groove, 

indented and projecting steel crossing the interface. Loading was then applied horizontally on 

the concrete topping until failure was observed under various normal stresses; n = 0 N/mm2, 

0.5 N/mm2, 1.0 N/mm2 and 1.5 N/mm2. The relationship between surface texture, interface 

shear strength and normal stress was then proposed in this study. The roughness profile of the 

concrete base was measured using a portable stylus roughness instrument. The experimental 

results show that the transverse roughened surface produced the highest interface shear 

strength of 1.89 N/mm2 (at n = 0 N/mm2), 4.69 N/mm2 (at n = 0.5 N/mm2), 5.97 N/mm2 (at 

n = 1.0 N/mm2) and 6.42 N/mm2 (at n = 1.5 N/mm2). This is then followed by roughened in 

the longitudinal direction, indented, groove and smooth or left “as-cast” surfaces. The increase 

in the degree of roughness contributed to higher concrete cohesion and friction coefficient. 

The surface with projecting steel exhibited plastic deformation and yielding before it failed 

completely as compared with the other surfaces which failed in brittle fracture. Analytical 

equations were then proposed to predict the friction coefficient and concrete cohesion by 

integrating Rpm into the interface shear strength equation for surface without projecting steel. 

In contrast, for surface with projecting steel, the proposed design equation does not integrate 

Rpm in determining friction coefficient and concrete cohesion. The comparison shows good 

concordance with the experimental results within an acceptable range. The results from the 

“push-off” test were then compared and validated with Finite Element Analysis (FEA) using 

Cohesive Zone Model (CZM). The percentage differences between the FEA model and the 

proposed analytical equations ranged from 6% to 29% (smooth or “left as-cast”), 4% to 14% 

(indented), 3% to 21% (transverse roughened) and 58% to 72% (surface with projecting steel). 

In addition, the interface shear strength properties from the “push-off” FEA results were 

applied in the full-scale composite slab FEA modeling. The composite slab was modeled using 

Concrete Damaged Plasticity (CDP) for smooth or left “as-cast”, indented and transverse 

roughened surfaces. Meanwhile, the surface with projecting steel was modeled using Cap 

Plasticity Model (CPM). The study concluded that the design interface shear strength, vRdi from 

the proposed equation of the “push-off” test should be higher than the interface shear strength, 

vEdi based on the ultimate vertical shear load of the full-scale FEA model. As stated in 

Eurocode 2, the actual interface shear strength should be lower or equal to the design value 

(𝜈𝐸𝑑𝑖 ≤  𝜈𝑅𝑑𝑖) for the composite slab to act monolithically. 
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ABSTRAK 

 

 

 
Kekuatan ricih antara muka dua lapisan konkrit dituang pada masa yang berlainan memainkan 

peranan penting untuk menghasilkan tindakan komposit papak lantai. Kebanyakan kajian 

sebelumnya apabila mengukur kekuatan ricih konkrit antara muka dengan unjuran keluli tidak 

mengambil kira paduan konkrit. Sebaliknya, konkrit antara muka tanpa unjuran keluli 

bergantung sepenuhnya kepada paduan konkrit dalam mengukur kekuatan ricih antara muka. 

Walaupun terdapat kajian dijalankan ke atas tindakan kekuatan ricih antara muka dengan 

tegasan normal pelbagai, bagaimanapun, penemuan tersebut hanya mengambil kira 

permukaan licin atau “as-cast”. Tambahan pula, Model Unsur Terhingga (FEM) untuk ikatan 

konkrit-ke-konkrit terhadap kelakuan ricih antara muka juga terhad dalam penyelidikan. 

Dalam kajian ini, sebanyak 72 ujian "push-off" telah dijalankan untuk mengkaji kekuatan ricih 

antara muka papak komposit dengan enam jenis tekstur permukaan. Ini termasuk licin atau 

“as-cast”, kasar dengan berus dawai dalam arah membujur dan melintang, keluk alur, lekukan 

dan unjuran keluli melintasi antara muka. Beban kemudiannya dikenakan secara melintang 

terhadap penutup konkrit sehingga kegagalan diperolehi di bawah kepelbagaian tegasan 

normal; 0 N/mm2, 0.5 N/mm2, 1.0 N/mm2 dan 1.5 N/mm2. Hubungan di antara tekstur 

permukaan, kekuatan ricih antara muka dan tegasan normal dicadangkan dalam kajian ini. 

Profil kekasaran asas konkrit diukur dengan menggunakan alat kekasaran “stylus” mudah alih. 

Keputusan eksperimen menunjukkan bahawa permukaan kasar melintang menghasilkan 

kekuatan ricih antara muka paling tinggi iaitu 1.89 N/mm2 (σn = 0 N/mm2), 4.69 N/mm2 (σn = 

0.5 N/mm2), 5.97 N/mm2 (σn = 1.0 N/mm2) dan 6.42 N/mm2 (σn = 1.5 N/mm2). Ia kemudiannya 

diikuti dengan permukaan kasar membujur, lekukan, keluk alur dan licin atau “as-cast”. 

Peningkatan terhadap tahap kekasaran menyumbang kepada paduan konkrit dan pekali 

geseran yang tinggi. Permukaan dengan unjuran keluli mempamerkan ubah bentuk plastik dan 

alah sebelum gagal sepenuhnya jika dibandingkan dengan permukaan lain yang gagal dalam 

patah rapuh. Persamaan analitikal dicadangkan untuk meramalkan pekali geseran dan paduan 

konkrit dengan mengintegrasikan Rpm ke dalam persamaan kekuatan ricih antara muka untuk 

permukaan tanpa unjuran keluli. Sebaliknya, untuk permukaan dengan unjuran keluli, 

persamaan rekabentuk yang dicadangkan tidak mengintegrasikan Rpm dalam menentukan 

pekali geseran dan paduan konkrit. Perbandingan menunjukkan persetujuan yang baik dengan 

julat yang boleh diterima. Keputusan daripada ujian “push-off” kemudiannya dibandingkan 

dan disahkan dengan Analisis Unsur Terhingga (FEA) menggunakan Cohesive Zon Model 

(CZM). Peratus perbezaan di antara model  FEA  dengan persamaan analitikal yang 

dicadangkan adalah dalam julat 6% hingga 29% (licin atau “as-cast”), 4% hingga 14% 

(lekukan), 3% kepada 21% (kasar melintang) dan 58% kepada 72% (permukaan dengan 

unjuran keluli). Di samping itu, ciri-ciri kekuatan ricih antara muka daripada keputusan FEA 

“push-off” telah diaplikasikan di dalam model FEA papak komposit berskala penuh. Papak 

komposit dimodelkan dengan menggunakan Concrete Damaged Plasticity (CDP) di 

permukaan licin atau "as-cast", keluk alur dan kasar melintang. Sementara itu, permukaan 

dengan unjuran keluli dimodelkan menggunakan Cap Plasticity Model (CPM).  

Kesimpulannya, kekuatan ricih antara muka, vRdi daripada cadangan persamaan ujian “push-

off” perlu lebih tinggi daripada kekuatan ricih antara muka, vEdi berdasarkan beban ricih 

muktamad menegak model FEA berskala penuh. Seperti yang dinyatakan di dalam Eurocode 

2, kekuatan ricih antara muka sebenar haruslah lebih rendah atau sama dengan nilai 

rekabentuk, vEdi ≤ vRdi untuk papak komposit bertindak secara monolitik. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Precast slab is widely used in reinforced concrete building, such as in offices, 

condominiums, hotels, commercial buildings, educational facilities and even high-

rise buildings. For precast slab, they have the ability to cover large span area apart 

from other advantages such as comparatively low weight and reduced construction 

time. Furthermore, the use of formwork is minimal due to its flexibility in design. 

Precast slab composed of a singular unit, which is cast at the factory, transported and 

erected at the construction site as shown in Figure 1.1.  

 

 

Figure 1.1 Placing the precast slab 
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After placing each unit of the precast slab, they are joined together by 

grouting along its longitudinal joints. In order to enhance the structural performance 

of the precast slab, cast in-place topping is added to produce a completed floor 

finishes. The added concrete topping increases the slab thickness which contributes 

to higher flexural and shear strength. However, it is essential to produce adequate 

interface shear stress along the contact between the precast slab and concrete 

topping.  

 

As mentioned in the Code of Practice (ACI 318, 2008; Eurocode, 2004 and 

CEB-FIB Model Code 2010, 2010), interface shear strength between an existing 

concrete base and concrete topping must be maintained through concrete cohesion, 

friction and dowel action from the projecting steel reinforcement. For the surface 

without the projecting steel reinforcement, interface shear depends on the surface 

roughness contributing from the concrete cohesion and friction coefficient.  Figure 

1.2 shows the forces acting on the composite slab and flexural strain distribution 

between the concrete base and concrete topping.  

 

 

 

 

Figure 1.2 Composite action between existing precast slab and newly added concrete 

topping 

 

 

 

Applied load 

Flexural strain 

distribution 

Interface shear transfer 
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1.2 Problem Statement 

Most previous studies when quantifying the interface shear strength of 

interface concrete with projecting steel, concrete cohesion is not taken into 

consideration. They only considered friction from the normal stress and clamping 

stress. Similarly, interface concrete without projecting steel which depended solely 

on the surface texture considered only concrete cohesion in quantifying the interface 

shear strength. Although there are little studies conducted on the action due to the 

variable normal stresses, however, the findings still lack for the various surface 

textures which considered smooth or left “as-cast” as the only type of surface by the 

previous researcher. So far no research has been conducted on concrete layers with 

variable normal stresses and different types of surface textures at the interface with 

and without the projecting steel. Furthermore, Finite Element Modeling (FEM) of the 

interface shear behavior for concrete-to-concrete bond is also lacking in research. 

New interface modelling technique is introduced in this study for different surface 

textures. 

 

The addition of the cast-in place topping increases the flexural and shear 

strength of composite slab by increasing the effective depth. This additional 

parameter can increase the service and ultimate load of the composite slab. It is 

important for the composite slab that the interface transfers all stresses sufficiently 

and without any slippage. The flexural strength of the composite slab may reduce if 

the components are not acting monolithically. If the loading system exceeded the 

interface shear strength capacity, the precast slab and concrete topping will begin to 

slide relative to each other. The situations where the interface shear strength 

exceeded the design strength, projecting steels are added on the top surface of the 

precast as shown in Figure 1.3. This projecting steel crosses the interface will give 

additional bond and therefore increases the interface shear strength capacity. 

Furthermore, the projecting steel is added to resist further interface slip to occur and 

maintained the integration between the precast slab and concrete topping. 
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Figure 1.3 Projecting steel at the top of the precast slab 

 

 

In order for the composite slab to behave monolithically, the bond at the 

interface between the precast slab and concrete topping must remain intact.  The 

interface shear stress must be sufficiently transferred along the interface of the two 

concretes. However, when load is applied on the weaker interface bond, it may cause 

interface failure due to slippage of the concrete topping. If this slip occurred and the 

composite action is lost, only friction force is acted between the precast slab and 

concrete topping. Therefore, each concrete layers will deform separately due to the 

vertical forces which causes tension at the bottom of the two concretes. Figure 1.4 

and 1.5 show the stress distributions for the weak interface bond (non-composite 

section) and the strong interface bond (composite section) of the composite slab. 

 

 

 

 

Figure 1.4 Non-composite section (Kovach and Naito, 2008) 
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Figure 1.5 Composite section (Kovach and Naito, 2008) 

 

 

The “shear-friction theory” is adopted in major Codes of Practice to predict 

the interface shear strength between concrete layers cast at different times. The 

“shear-friction theory” considers the interface shear stress must be transferred 

crossing the interface of concrete layers and simultaneously subjected to external 

normal stress that causes friction. The following interface shear strength parameters 

are considered; (a) compressive strength of the weakest concrete; (b) normal stress 

acted at the interface; (c) projecting steel crossing the interface; and (d) surface 

texture on the top surface of the concrete base.  

 

 

 

 

1.3 Objectives 

The objectives of this study are as follows: 

 

 

i. To evaluate the interface shear strength of composite slab with 

different surface textures using the “push-off” test method.  

ii. To determine the relationship of the interface shear strength 

considering the contribution of the friction coefficient, concrete 

cohesion, normal stress and clamping stress from projecting steel. 
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iii. To determine the interface shear strength of Finite Element Modeling 

on the composite slab with different surface textures and to compare 

the result from the “push-off” test method. 

iv. To determine the relationship of the interface shear strength to the 

shear capacity of the full scale composite slab from the Finite Element 

Modeling. 

 

 

1.4 Scope of Study 

This study focused on the interface shear strength between existing concrete 

base and newly cast in-situ concrete topping. The background information of the 

interface shear strength quantification methods in the current design codes is 

described in Chapter 2.  

 

To investigate the effect on the interface shear strength considering friction 

coefficient, concrete cohesion, dowel action from the projecting steel reinforcement 

and surface preparation specified in Eurocode 2 (2004), experimental work is carried 

out on small-scale specimens. The “push-off” test method is carried out to study the 

influence of different surface textures on the interface shear strength. The top 

surfaces of the concrete base are treated in six different ways: 

 

(a) smooth or “left as-cast” with trowelled finish, 

(b) deep groove formed using a 16 mm steel bar, 

(c) roughened by wire-brushing in the longitudinal direction, 

(d) roughened by wire-brushing in the transverse direction, 

(e) indented surface cast using a corrugated steel mold, and 

(f) projecting steel reinforcement crossing the interface. 

 

The surface with projecting steel reinforcement is to make comparison with 

the other surfaces without any steel reinforcement. The roughness of each texture is 

measured using a Portable Stylus instrument to quantify the roughness parameters to 

determine the relationship between interface shear strength and surface roughness. 
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For each of surface texture, concrete topping of 300  300  75 mm deep is cast on 

top of the 300  300  100 mm deep concrete base. Loading is applied 

simultaneously in two directions; horizontally along the interface and vertically with 

variable normal stresses. The variable normal stresses are applied at 0.5 N/mm2, 1.0 

N/mm2 and 1.5 N/mm2 for each specimen in order to define the Mohr-Coulomb 

failure envelope.  

 

In the finite element modeling, small-scale models are developed using 

ABAQUS. For verification purposes, the finite element modeling results are 

compared with the “push-off” test results. All material properties and design 

parameters are the same with the “push-off” test specimens. The finite element 

results will give a thorough insight on the interface shear failure criterion, elastic 

stiffness and fracture energy that influence the interface shear failure. 

 

To verify the small-scale models, full-scale composite slab specimens are 

also modeled using finite element method. The slab is one-way, simply supported 

and restrained at both ends. The dimension of each layer is 3000 mm length  1200 

mm width. Meanwhile, the thickness of the base is 100 mm and concrete topping is 

75 mm. The material properties and design parameters are the same with the small 

scale modeling.  

 

 

 

 

1.5 Significant of Study 

This study gives clear understanding on the influence of different types of 

surface texture on the interface shear strength of the composite slab. The interface 

shear strength empirical equation proposed in this study takes into account the 

roughness depth, friction and concrete cohesion. Moreover, as the research show that 

the surface without projecting steel can be put greater reliance on the friction and 

concrete cohesion then it is possible to reduce or even eliminate the use of projecting 
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steel. The significant findings of this research will be beneficial in the following 

ways: 

i. Aid in suggesting the friction and concrete cohesion values in Eurocode 2 

based on quantification of surface textures which will provide accurate 

prediction and replace the qualitative observation on surface textures. 

ii. Assist fabricators and engineers in improving the quality of surface 

preparation for precast construction and providing an established database 

for design works in the future. 

iii. The reduction of projecting steel crossing the interface can reduce the 

fabrication cost thus reducing the time to bend and tied the steel. 

iv. Provide construction safety in which the presence of projecting steel on 

top of the precast slab can exposed tripping hazard to the safety of 

workers.  

v. The study will provide a FE model of simplified “push-off” specimens 

that can accurately represent the shear transfer at concrete-to-concrete 

bond. This model can be used for predicting the interface shear strength 

as well as slip with varied parameters. 

 

 

 

 

1.6 Thesis Organization 

 The structure of this thesis is as follows: 

 

(a) Chapter 2 presents the literature review on the subject of this thesis. 

 

(b) Chapter 3 describes the test setup and instrumentation used in the 

experimental work for the small-scale “push-off” test specimens. 

 

(c) Chapter 4 describes the Finite Element modeling technique of the small-scale 

and full-scale specimens. 
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(d) Chapter 5 presents the experimental results and analysis of the small-scale 

“push-off” test. Analytical work on the proposed expression for the interface 

shear strength is also presented in this chapter. 

 

(e) Chapter 6 presents the Finite Element modeling results of the small-scale 

specimens. The comparison and verification with the experimental “push-off” 

test results are also discussed in this chapter. 

 

(f) Chapter 7 presents and discussed the Finite Element modeling results of the 

full-scale composite slab. 

 

(g) Chapter 8 presents the conclusion of all the test results and recommendation 

for further study. 
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(projecting steel surface), 0.53 N/mm2 (indented surface) and 0.91 N/mm2 

(transverse roughened surface).  

 

iii. The highest interface shear strength is found at transverse roughened surface 

as higher interface shear strength property is applied compared to other 

surface textures. This then followed by indented, projecting steel and smooth 

surfaces. The interface shear strength at projecting steel surface is lower than 

indented surface even though higher vertical shear strength is found at 

projecting steel surface compared to indented surface. Due to stress transfer 

from interface layer to the projecting steel, deformation at projecting steel is 

occurred. 

 

iv. The same interface shear strength properties are applied to both of small-scale 

and full-scale of FE modeling and the values from full-scale of composite 

slab is smaller than the small-scale of experimental and finite element. This is 

due to different size and configuration between the specimen models that give 

different result.  The study concluded that the design interface shear strength, 

vRdi from the proposed equation of the “push-off” test should be higher than 

the interface shear strength, vEdi based on the ultimate vertical shear load of 

the full-scale FE model of composite slab. As stated in Eurocode 2, the actual 

interface shear strength should be lower or equal to the design value (νEdi≤ 

νRdi) for the composite slab to act monolithically. 

 

 

 

 

8.2 Recommendations for Further Investigations 

The areas for further studies that are essential for adequate information on the 

interface shear strength are suggested as follows: 

 

i) Further experimental research focusing on the quality of surface preparation 

such as the removal of concrete laitance would provide more detailed insight 
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on the effect to the interface shear strength. Concrete laitance can be found on 

existing concrete due to cutting during the precast slab production. Therefore, 

building defects can be prevented prior to the construction work.  

ii) Further experimental work involving the provision related to the curing 

conditions, differential shrinkage and stiffness between concrete base and 

concrete topping. 

iii) Experimental study on the full-scale composite concrete slab should be further 

conducted on bending and combination of shear-bending tests. 
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