MICROBIAL INDUCED CALCITE PRECIPITATION TREATMENT ON TROPICAL RESIDUAL SOIL

KENNY TIONG PING CHIET

UNIVERSITI TEKNOLOGI MALAYSIA

MICROBIAL INDUCED CALCITE PRECIPITATION TREATMENT ON TROPICAL RESIDUAL SOIL

KENNY TIONG PING CHIET

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Civil Engineering)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > JULY 2016

To my beloved parents, lover and sibling

ACKNOWLEDGEMENT

Foremost, I would like to express my sincere gratitude to my supervisor, Prof. Dr. Khairul Anuar Kassim of the Faculty of Civil Engineering, Universiti Teknologi Malaysia for his encouragement, guidance, and supervision during the development of this thesis.

I would like to express my thankful appreciation to my parents and sibling who always support and encourage me throughout my life. Special thanks also extended to my lover, Ms. Khor Bee Chen, for her love, encouragement, contribution and support. This thesis would not been possible without their love and support.

Besides that, I am heartily thankful to all the academic staff and laboratory staff of the Faculty of Civil Engineering who are very professional and dedicated in assisting me during my laboratory works in numerous ways. Their advises, technical support, and knowledge had made this project possible.

Last but not least, my sincere appreciation also to all my friends and colleagues especially to Prof. Dr Zaharah Ibrahim, Dr Lee Min Lee, Dr Felix Ling Ngee Leh, Dr Chong Siaw Yah, Dr Chang Fung Lung, Dr Liew Wai Loon, and others, who helped me directly and indirectly in accomplishing this research. Thank you very much to all of those who supported me in any respect during the completion of the thesis.

Throughout the course of my doctoral program, I have been financially sponsored by Ministry of Science, Technology and Environment (MOSTI) under the e-science fund and government of Malaysia under My Brain 15 scholarship. For all this, I shall be forever indebted towards their financial aids.

Kenny Tiong, UTM JB 2016

ABSTRACT

Biomediated soil improvement, also known as Microbial Induced Calcite Precipitation (MICP), is a promising new branch of microbial geotechnology. Earlier MICP studies only focused on sandy soils, but more recent studies have also investigated the potential and feasibility of MICP on tropical residual soil. The main objective of this study is to examine the feasibility of MICP and the mechanisms involved between two types of bacteria and chemical reagents in improving the strength of tropical residual soil. Essentially, this was about identifying the optimized treatment conditions as well as the effects of some specific MICP parameters and curing on unconfined compressive strength (UCS) development and calcite distribution. Two bacteria from the Bacillus family, namely, Bacillus subtilis and Sporosarcina pasteurii, were used as urease producing bacteria. The tropical residual silt soil with 80% fine soil was compressed to a cylindrical sample measuring 100 mm in height and 50 mm in diameter as well as having a dry density of 1.31 Mg/m³. Continuous injection method was employed. Series of tests were carried out, with each having different chemical reagents concentrations (0.15, 0.25, 0.35 or 0.45 M), reagent flow pressures (0.1, 0.2, 0.3 or 0.4 bars), and treatment durations (24, 48, 72 or 96 hours). Strength improvement of about 56.70% and 38.14% was immediately discovered after MICP treatment using Sporosarcina pasteurii and Bacillus subtilis, respectively. Additionally, strength improvement of about 30 to 104.12% were recorded after curing the samples for 3, 7, 14, 20, and 28 days. The optimum curing period was 14 days. The optimum treatment condition of MICP treatment for both bacteria consisted of 0.25 M of reagent concentration, 0.2 bars of reagent flow pressure, and 48 hours of treatment duration. The reagent flow pressure was the only MICP parameter that affected calcite distribution. No clear correlation was observed between calcite precipitation and strength. The two bacteria had distinctive responses to the designated treatment conditions as the behaviour of living microorganisms could differ although they are from the same family. This information were analysed to establish design charts for MICP practitioner in selecting optimal MICP parameters under different circumstances.

ABSTRAK

Pembaikan tanah secara Biomediated yang juga diketahui sebagai pemendakan kalsit cetusan mikrob (MICP) merupakan bidang Geoteknologi mikrob yang baru dan berpotensi. Kajian-kajian awal MICP hanya tertumpu kepada tanah berpasir, tetapi beberapa kajian baru MICP telah dijalankan untuk mengkaji potensi dan kebolehlaksanaan MICP ke atas tanah baki tropika. Objektif utama kajian ini adalah untuk mengkaji kebolehlaksanaan MICP dan mekanismanya antara dua jenis bakteria serta reagen kimia untuk meningkatkan kekuatan tanah baki tropika, mengenalpasti keadaan rawatan yang optima, kesan parameter MICP yang tertentu dan pengawetan terhadap perkembangan kekuatan tak terkurung dan taburan kalsit. Dua jenis bakteria dari keluarga Bacillus yang sama, Bacillus subtilis dan Sporosarcina pasteurii, digunakan sebagai bakteria penghasil urease. Kelodak dari tanah baki tropika dengan 80% butiran halus telah dimampatkan kepada sampel berbentuk silinder dengan ketinggian 100 mm, garispusat 50 mm serta berketumpatan kering 1.31 Mg/m³. Kaedah suntikan berterusan digunakan untuk rawatan ini. Siri ujian MICP telah dilakukan dengan mengubah kepekatan reagen kimia (0.15, 0.25, 0.35, dan 0.45 M), tekanan aliran reagen (0.1, 0.2, 0.3, dan 0.4 bars), dan tempoh rawatan (24, 48, 72, dan 96 jam). Peningkatan kekuatan sebanyak 56.70 % dan 38.14 % telah diperhatikan sejurus selepas rawatan MICP yang menggunakan Sporosarcina pasteurii dan Bacillus subtilis. Disamping itu, peningkatan kekuatan sebanyak 30 hingga 104.12 % telah direkodkan selepas proses pengawetan selama 3, 7, 14, 20, dan 28 hari. Masa pengawetan optimum adalah 14 hari. Keadaan optimum MICP untuk kedua-dua bacteria adalah 0.25 M kepekatan reagen, 0.2 bar tekanan aliran reagen, dan 48 jam tempoh rawatan. Tekanan aliran reagen adalah satu-satunya parameter MICP yang memberikan kesan terhadap taburan kalsit. Tiada hubungan yang jelas antara mendakan kalsit dan kekuatan. Keduadua bakteria memberi tindak balas yang berbeza terhadap rawatan dalam kajian ini kerana mikroorganisma hidup mempunyai kelakukan yang berlainan walaupun dari keluarga yang sama. Maklumat ini telah dianalisa bagi menghasilkan carta rekabentuk untuk pengguna MICP dalam membuat pemilihan parameter MICP yang optima bagi keadaan yang berbeza.

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE	
	DECI	LARATION	ii	
	DEDI	DEDICATION		
	ACKN	NOWLEDGEMENT	iv	
	ABST	TRACT	v	
	ABST	'RAK	vi	
	TABL	JE OF CONTENTS	vii	
	LIST	OF TABLES	xiii	
	LIST	OF FIGURES	xvi	
	LIST	OF ABBREVIATIONS	xxii	
	LIST	OF SYMBOLS	xxiv	
	LIST	OF APPENDICES	XXV	
1	INTR	ODUCTION	1	
	1.1	Background of Study	1	
	1.2	Problem Description	3	
	1.3	Objectives	4	
	1.4	Scope of Study	4	
	1.5	Structure of Thesis	5	
	1.6	Significance of Study	7	
2	LITE	RATURE REVIEW	8	
	2.1	Introduction	8	
	2.2	Tropical Residual Soil	8	
	2.3	Engineering Properties of Tropical Residual Soil	11	
		2.3.1 Strength	11	
		2.3.2 Hydraulic Conductivity	13	
	2.4	Biomediated Soil Stabilization	15	
	2.5	Theory and Mechanism of Biomediated Soil		
		Stabilization	16	

	2.5.1	The Mechanisms of MICP with Soil	
		Particle	19
	2.5.2	Calcite Distribution within Pore Space	20
2.6	MICP S	Studies in Civil Engineering	22
	2.6.1	MICP Application in Civil Structural and	
		Construction Materials	22
	2.6.2	MICP Application in Geotechnical Engi-	
		neering	23
2.7	Microon	rganism	27
	2.7.1	Sporosarcina pasteurii	29
	2.7.2	Bacillus subtilis	30
	2.7.3	Microorganisms Used for MICP Studies	31
		2.7.3.1 MICP Geotechnical Compatible	32
	2.7.4	Role of Bacteria in MICP Treatment	34
2.8	Microbi	ial Induce Calcite Precipitation (MICP)	35
2.9	Parame	ters and Factors Affecting on Formation of	
	Microbi	ial Induced Carbonate Precipitation (MICP)	38
	2.9.1	Temperature and pH	39
	2.9.2	Nutrient for Bacteria Growth	40
	2.9.3	Bacteria Cell Concentration	41
	2.9.4	Chemical Reagent Concentration	42
	2.9.5	Chemical Reagents Flow Pressure for	
		MICP Continuous Injection Method	43
	2.9.6	Curing of MICP Treated Soil	43
2.10	Effect o	of MICP on Soil Engineering Properties	45
	2.10.1	Strength and Stiffness	45
	2.10.2	Permeability	45
	2.10.3	Compressibility	46
2.11	Enzyme	e Option on Biomediated Soil Stabilization	46
2.12	Conclue	ding Remarks	47
RESE	ARCH MI	ETHODOLOGY	50
3.1	Introdu	ction	50
3.2	Collecti	ion of Soil Sample	54
3.3	Determ	ination of Physical Properties	57
	3.3.1	Specific Gravity	57
	3.3.2	Particle Size Distribution	57
	3.3.3	Atterberg Limit	58
3.4	Determ	ination of Engineering Properties	58

	3.4.1	Compaction	58
	3.4.2	Permeability	59
	3.4.3	Unconfined Compressive Strength (UCS)	61
3.5	Determ	ination of Chemical and Microstructure	
	Propert	ies	62
	3.5.1	Determination of Soil pH	62
	3.5.2	Calcite Content Measurement	64
	3.5.3	Determination of Mineral and Compounds	67
	3.5.4	Determination of Mineralogical Elements	67
	3.5.5	Field Emission Scanning Electron Micro-	
		scope (FESEM)	70
3.6	Urease	Producing Microorganism	71
	3.6.1	Sporosarcina pasteurii	72
	3.6.2	Bacillus subtilis	72
	3.6.3	Bacteria Growth Mediums and Preparation	
		Methods	73
	3.6.4	Equipment and Materials for Sterilization	
		and Cultivation Process	76
	3.6.5	Cultivation Process	79
	3.6.6	Preparation of Nutrient Broth	83
	3.6.7	Preparation of Nutrient Agar	83
	3.6.8	Bacteria Counting	86
3.7	Chemic	al Reagents	88
3.8	Method	of Placement	89
3.9	MICP 7	Freatment Laboratory Setup	89
	3.9.1	Stainless Steel Mould	93
	3.9.2	Pressure Gauge, Fittings, and PVC Tubing	97
	3.9.3	Pressure Tank	100
	3.9.4	Pneumatic Compressor	101
	3.9.5	Research Programme and Treatment	
		Variables	102
3.10	Sample	Preparation for MICP Treatment	104
3.11	Extrusio	on of Soil Sample after MICP Treatment	110
	3.11.1	Strength Test after MICP Treatment	113
	3.11.2	Hydraulic Conductivity after MICP Treat-	
		ment	113
	3.11.3	Calcite Determination after MICP Treat-	
		ment	113
	3.11.4	FESEM and XRD after MICP Treatment	114

	3.11.5	Curing Process for MICP Treated Soil	114
3.12	Conclue	ding Remarks	116

4

		AL PROPERTIES OF TROPICAL	
		OIL AND VARIATION OF MICP	
TREA	TMENT (CONDITIONS	
4.1	Introdu	ction	
4.2	Physica	l Properties]
4.3	Chemic	cal Properties	
4.4	Enginee	ering Properties of Tropical Residual Soil	
	4.4.1	Compaction	
	4.4.2	Unconfined Compressive Strength of	
		Tropical Residual Soil	
		4.4.2.1 Unsoaked Untreated Soil	
		4.4.2.2 Soaked Untreated Soil Sample	
		4.4.2.3 Comparison of Untreated	
		Soaked and Unsoaked Sample	
	4.4.3	Hydraulic Conductivity	
4.5	Variatio	on of MICP Treatment Conditions	
	4.5.1	Treatment with Chemical Reagents	
	4.5.2	Treatment with Nutrient Broth only	
	4.5.3	Treatment with Bacteria only	
		4.5.3.1 Treatment with Sporosarcina	
		pasteurii only	
		4.5.3.2 Treatment with <i>Bacillus subtilis</i>	
		only	
4.6	Microb	ial Induced Calcite Precipitation (MICP)	
	Treatme	ent	
	4.6.1	MICP Treatment using Sporosarcina	
		pasteurii	
	4.6.2	MICP Treatment using Bacillus subtilis	
	4.6.3	Comparison of MICP using Sporosarcina	
		pasteurii and Bacillus subtilis	
4.7	Hydrau	lic Conductivity of MICP Treated Soil	
4.8	Conclu	ding Remarks	

5 EFFECT OF CHEMICAL REAGENTS FLOW PRES-SURE, CONCENTRATION, AND TREATMENT DURA-

5.1	Introdu	ction	174
5.2		of Chemical Reagents Flow Pressure	17
	5.2.1	Effect of Chemical Reagents Flow	
		Pressure on MICP Treatment using	
		Sporosarcina pasteurii	17
	5.2.2	Effect of Chemical Reagents Flow Pres-	
		sure on MICP Treatment using Bacillus	
		subtilis	17
5.3	Effect of	of Chemical Reagents Concentration	18
	5.3.1	Effect of Chemical Reagents Concentra-	
		tion using Sporosarcina pasteruii	18
	5.3.2	Effect of Chemical Reagent Concentration	
		on MICP Treatment using Bacillus subtilis	18
5.4	Effect of	of Treatment Duration	18
	5.4.1	Effect of Treatment Duration on MICP	
		Treatment using Sporosarcina pasteurii	18
	5.4.2	Effect of Treatment Duration on MICP	
		Treatment using Bacillus subtilis	19
5.5	Micros	tructure Study on MICP Treated and	
	Untreat	ed Soil	19
5.6	Compar	rison of MICP Treatments and Parameters in	
	Present	Study	19
5.7	Compa	rison of MICP Treatment Parameters with	
	Other S		20
5.8		of Calcite Uniformity on Strength Improve-	
		MICP Treated Soil	20
5.9		f MICP Treated Soil with Different Calcite	
	-	tation Position	20
5.10		n between Calcite Distribution and UCS	20
5.11	Conclu	ding Remarks	21
THE	MICP T	REATMENT DESIGN CHARTS AND	
EFFE(CT OF CU	JRING FOR MICP TREATMENT	21
6.1	Introdu	ction	21

6.1Introduction2136.2Establishment of MICP Design Charts213

		6.2.1	MICP Treatment using Sporosarcina	
			pasteurii: Treatment Duration Versus	
			Chemical Reagents Concentration	214
		6.2.2	MICP Treatment using Bacillus subtilis:	
			Treatment Duration Versus Chemical	
			Reagents Concentration	218
			6.2.2.1 The MICP Design Chart	222
	6.3	Effects of	f Curing Period on MICP Treated Tropical	
		Residual	Soil	226
	6.4	Concludi	ng Remarks	230
7	CONCL	USIONS	AND RECOMMENDATIONS	231
	7.1	Introduct	ion	231
		7.1.1	Optimization of MICP Treatment	231
		7.1.2	Strength	231
		7.1.3	Permeability	232
		7.1.4	Microstructure of MICP Treated Soil	233
		7.1.5	Relationship of MICP Parameters and	
			Calcite Distribution	233
		7.1.6	Relationship of Calcite Precipitation and	
			Strength Development	233
		7.1.7	Post MICP Treatment: Curing and MICP	
			Design Chart	234
	7.2	Recomm	endations	235
REFERENC	ES			236
Appendices A	. – B		2	252 - 262

xii

LIST OF TABLES

TABLE NO.

TITLE

PAGE

2.1	Definitions of residual soil	9
2.2	Overview of MICP Applications in Civil engineering by using	
	Bacillus class bacterium	23
2.3	MICP application in geotechnical engineering	24
2.4	Type of bacteria used in MICP treatment in geotechnical	
	engineering	25
2.5	The optimum parameter used by other MICP studies	26
2.6	The bacteria used in biomediated soil improvement	31
2.7	Factors affecting the survival of bacteria in soils (van Veen	
	<i>et al.</i> , 1997)	38
2.8	The factors affecting on MICP	39
2.9	The nutritional requirements for bacteria (Mitchell and	
	Santamarina, 2005)	40
3.1	Number of the testing performed in this MICP research	52
3.2	Code of practices used in this research	56
3.3	Chemical composition of medium (ATCC ® 1376)	72
3.4	Chemical composition of medium (ATCC [®] 18) for <i>Bacillus</i>	
	Subtilis	73
3.5	Method of preparation for ATCC [®] 18 and ATCC [®] 1376	75
3.6	Chemical composition of nutrient broth	83
3.7	Chemical composition of chemical reagents	89
3.8	Experimental variables	103
4.1	Physical properties and classification of tropical residual soil	
	specimen	118
4.2	Physical properties of tropical residual soil	119
4.3	Soil composition and classification of tropical residual soil	121
4.4	Value of carbonate content and pH of some granite residual	
	soils in Peninsular Malaysia	122
4.5	Value of chloride, sulphate and organic matter from other	
	studies of granite residual soils	123

4.6	Major compositions in granitic residual soil	124
4.7	Engineering properties of some granite residual soils	126
4.8	Comparison of shear strength for tropical residual soil	129
4.9	Parameters and variable in each treatment condition	136
4.10	Composition and pH value of the medium and chemical	
	reagents	144
4.11	Composition and pH for Bacillus subtilis medium	150
4.12	Total Sodium chloride (NaCl) in treatment conditions	152
4.13	Comparison of MICP treated soil in present study	164
4.14	Shear strength and percentage of improvement for different	
	treatment condition	165
4.15	permeability and percentage of improvement under different	
	treatment condition	169
4.16	Summary for strength and permeability for different treatment	
	conditions	173
5.1	Comparison of optimum parameters, UCS, and calcite	
	distribution for MICP treatment in present study	198
5.2	Comparison of optimum MICP parameters with other studies	201
5.3	Calcite distribution and UCS	207
5.4	Summary of the MICP treatments	211
6.1	Strength improvement for MICP treatment using Sporosarcina	
	pasteurii at different chemical reagents concentrations and	
	treatment durations	217
6.2	Optimum chemical reagent concentration and percentage of	
	improvement for MICP treatment using Sporosarcina pasteurii	
	for different treatment duration	217
6.3	Optimum treatment duration and percentage of improvement	
	for MICP treatment using Sporosarcina pasteurii with	
	different reagent concentration	217
6.4	Percentage of UCS Improvement for MICP treatment using	
	Bacillus subtilis at different chemical reagents concentration	
	and treatment duration	220
6.5	Optimum chemical reagent concentration, and percentage of	
	improvement for MICP treatment using Bacillus subtilis at	
	different treatment durations	221
6.6	Optimum treatment duration and percentage of improvement	
	for MICP treatment using Bacillus subtilis with different	
	concentrations	221

6.7	The MICP treatment design chart for Sporosarcina pasteurii	
	and Bacillus subtilis	223

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

2.1	Schematic diagram of weathering profile for residual soil	
	(Little, 1969)	10
2.2	Water flow at flocculated and dispersed soil structure (Datta,	
	2005)	13
2.3	Overview of bio-mediated soil improvement systems (DeJong	
	<i>et al.</i> , 2010)	15
2.4	Overview of MICP process (DeJong et al., 2010)	17
2.5	Illustration of calcite distribution alternatives within pore space	
	(DeJong <i>et al.</i> , 2010)	21
2.6	Illustration of calcite failure mechanism alternatives of calcite	
	due to compression and/or shearing (DeJong et al., 2010)	21
2.7	Bacteria morphology shapes (Barnes-Svarney and Svarney,	
	2014)	27
2.8	Image of Sporosarcina pasteurii shape (Bang et al., 2010)	29
2.9	Image of Bacillus subtilis shape (Samarakoon et al., 2012)	30
2.10	Geotechnical compatible of MICP process (DeJong et al.,	
	2010)	33
2.11	Shape of different type of calcium carbonate (Dhami et al.,	
	2013)	36
2.12	SEM imagae of amorphous calcium carbonate (ACC)	
	produced by Sporosarcina pasteurii (Richardson et al., 2014)	37
3.1	Research methodology framework	51
3.2	Timeframe for the MICP treatment processes	53
3.3	Sampling location	54
3.4	Collection of soil sample	55
3.5	Photograph of falling head hydraulic conductivity test	60
3.6	2 kN load frame with unconfined compressive test equipment	61
3.7	Soil pH testing using pH meter	63
3.8	Soil pH testing using litmus paper	63
3.9	The filter paper used in calcite determination	65

3.10	Equipment for calcite content determination	66
3.11	XRF device	68
3.12	Inside view of the XRF device	68
3.13	Manual hydraulic compressor	69
3.14	Compressed and solidified soil samples for XRF analysis	69
3.15	FESEM device	70
3.16	Photograph of the bacteria	71
3.17	The growth mediums for Bacillus subtilis and Sporosarcina	
	pasteurii	74
3.18	The equipment and materials for bacteria cultivation	76
3.19	The structure and components of autoclave	77
3.20	Flowchart of cultivation of bacteria	80
3.21	Bacteria was pipetted out from the source	81
3.22	Transferring the bacteria to new medium for cultivation	81
3.23	The conical flask was sealed with aluminium foil and parafilm	82
3.24	Placing the conical flasks into the incubator	82
3.25	Nutrient broth and nutrient agar	84
3.26	Preparation of nutrient agar	85
3.27	Serial dilution	86
3.28	Bacteria counting (viable plate method)	87
3.29	Photographs of AR grade chemical reagents used in MICP	
	treatment	88
3.30	Schematic diagram and photographs of the laboratory setup	91
3.31	Flow chart illustrating the general procedure to perform MICP	
	treatment	92
3.32	Photographs of the stainless steel mould	93
3.33	Photographs of mould caps	94
3.34	Photographs of compression cap	95
3.35	Photographs of O-ring and rubber sheets	95
3.36	Breakdown diagram of the MICP sample and parts	96
3.37	Photographs of pressure regulator and pressure gauge	97
3.38	Photographs of different type of fittings	98
3.39	photographs of PVC tubes	99
3.40	Photographs of control valve	99
3.41	Photographs of fittings storage box	100
3.42	Photographs of pressure tank	101
3.43	Photographs of pneumatic air compressor	102
3.44	Flow chart illustrating the procedures of sample preparation	
	before MICP treatment	106

3.45	Photographs of the MICP sample preparation	107
3.45	Photographs of the MICP sample preparation (continued)	108
3.45	Photographs of the MICP sample preparation (continued)	109
3.46	The equipment used for sample extrusion	111
3.47	Flow chart illustrating the process of sample preparation after	
	MICP treatment	112
3.48	Sample curing process after MICP treatment	115
4.1	Particle size distribution of tropical residual soil in this study	120
4.2	Diffractogram of untreated granitic residual soil	125
4.3	Compaction curve of tropical residual soil	127
4.4	Stress-strain curve for unsoaked untreated sample	128
4.5	Stress-strain curve of the soaked untreated soil sample	130
4.6	Stress-strain curve for soaked and unsoaked untreated sample.	132
4.7	Comparison of failure plane for (untreated) unsoaked and	
	soaked soil samples	133
4.8	UCS values and moisture contents of untreated soil samples	
	immersed for 24, 36, and 48 hours	134
4.9	UCS value and calcite content for untreated soaked soil sample,	
	A1; soil sample treated with chemical reagents, A2; and soil	
	sample treated with nutrient broth only, A3	137
4.10	Plastic contraction of the sample treated with chemical	
	reagents only (Ductile)	138
4.11	Stress-strain curve of untreated and treated with chemical	
	reagents	139
4.12	Moisture content for untreated sample, A1; treated only with	
	cementation reagents, A2; and Treated with Sporosarcina	
	pasteurii at top, middle, and bottom part	140
4.13	Stress-strain curve of untreated, A1; treated with chemical	
	reagents, A2; and treated with nutrient broth, A3	143
4.14	Brittle failure of sample treated with nutrient broth only	144
4.15	Stress-strain curve of untreated and treated with bacteria only	146
4.16	Failure mode of the sample treated with bacteria (Sporosarcina	
	pasteurii) only	148
4.17	Stress-strain curve of untreated, A1; treated with Sporosarcina	
	pasteurii), A4; and treated with Bacillus subtilis, A5	149
4.18	Brittle failure of the sample treated with Bacillus subtilis only	151
4.19	Stress-strain curves of untreated, A1; MICP treatment	
	using Sporosarcina pasteurii, A6; and sample treated with	
	Sporosarcina pasteurii	154

4.20	Brittle failure of the MICP treated sample (Sporosarcina	
	pasteurii)	155
4.21	Calcite distribution at different parts of the sample under MICP	
	treatment (Sporosarcina pasteurii), A6	156
4.22	Stress-strain curves of untreated, A1; MICP treatment using	
	Bacillus subtilis, A7; and treatment with bacteria only	
	(Bacillus subtilis), A5	157
4.23	Brittle failure of the MICP treated sample (Bacillus subtilis)	158
4.24	Calcite distribution at different parts of the sample under MICP	
	treatment using Bacillus subtilis, A7	159
4.25	Stress-strain curves of untreated, A1; MICP treatment using	
	Sporosarcina pasteurii, A6; and MICP treatment using	
	Bacillus subtilis, A7	161
4.26	Comparison of calcite distribution for untreated, A1; MICP	
	treatment using Sporosarcina pasteurii, A6; and MICP	
	treatment using Bacillus subtilis, A7	162
4.27	UCS value of MICP treated soil under different treatment	
	condition: A1, Untreated; A2, chemical reagent only; A3,	
	nutrient broth only; A4, bacteria only (Sporosarcina pasteurii);	
	A5, bacteria only (Bacillus subtilis); A6, MICP treatment	
	(Sporosarcina pasteurii); and A7, MICP treatment (Bacillus	
	subtilis)	166
4.28	Hydraulic conductivity of MICP treated soil under different	
	treatment condition: A1, Untreated; A2, Chemical reagent	
	only; A3, Nutrient broth only; A4, Bacteria only (Sporosarcina	
	pasteurii); A5, Bacteria only (Bacillus subtilis); A6, MICP	
	treatment (Sporosarcina pasteurii); and A7, MICP treatment	
	(Bacillus subtilis)	168
4.29	Imaginary illustration of different MICP mechanism for	
	permeability	171
5.1	UCS and calcite contents under effect of reagent flow pressure	
	on MICP treatment using Sporosarcina pasteurii	175
5.2	Calcite distribution at different part of the sample under the	
	effect of chemical reagent flow pressure for MICP treatment	
	using Sporosarcina pasteurii	177
5.3	Effect of reagents flow pressure on MICP treated soil using	
	Bacillus subtilis	179

5.4	Calcite distribution at different part of the sample under the effect of reagents flow pressure for MICP treatment using	
	Bacillus subtilis	180
5.5	UCS and calcite contents under the effect of chemical reagent	
	concentrations for MICP using Sporosarcina pasteurii	182
5.6	Calcite distribution at different part of the sample under the	
	effect of chemical reagents concentrations for MICP treatment	
	using Sporosarcina pasteurii	184
5.7	UCS and calcite content for various concentration of chemical	
	reagent for MICP treated using Bacillus subtilis	185
5.8	Calcite distribution at different parts of the sample under the	
	effect of chemical reagents concentrations on MICP treatment	
	using Bacillus subtilis	187
5.9	UCS and calcite content under effect of treatment duration for	
	MICP treatment using Sporosarcina pasteurii	188
5.10	UCS and calcite content under effect of treatment duration for	
	MICP treatment using Sporosarcina pasteurii	190
5.11	UCS and calcite content for various concentration of chemical	
	reagent for MICP using Bacillus subtilis	191
5.12	Calcite distribution at different parts of the sample under the	- / -
	effect of treatment duration for MICP treatment using <i>Bacillus</i>	
	subtilis	192
5.13	FESEM of untreated sample. (1) intraaggregate pores (2)	
	interaggregates pores and (3) large pores within groups of	
	aggregates	194
5.14	FESEM of the rod shape calcified bacteria for MICP treatment	171
5.11	using Sporosarcina pasteurii	195
5.15	FESEM of MICP treated soil sample by using <i>Sporosarcina</i>	175
5.15	pasteurii	196
5.16	FESEM of MICP treated soil sample using <i>Bacillus subtilis</i>	196
5.17	FESEM of effective and ineffective calcite precipitation	197
5.18	Stress-strain curves for sample with uniform calcite	177
5.10	distribution, non-uniform calcite distribution and untreated	
	sample	203
5.19	UCS failure of MICP treated and untreated samples.	203
	UCS of MICP treated soil with dominant calcite at different	204
5.20		205
5 01	part of sample	205
5.21	Stress strain curves for sample with dominant calcite at	206
	different parts of the samples	206

5.22	Illustration for excessive calcite precipitation (side view)	208
5.23	Illustration for ineffective calcite precipitation (side view)	209
5.24	Illustration for effective calcite precipitation (side view)	210
6.1	Reagents concentration and treatment durations of MICP	
	treatment using Sporosarcina pasteurii	215
6.2	Reagents concentration and treatment duration of MICP	
	treatment using Bacillus subtilis	219
6.3	Example of using MICP chart for determining suitable	
	chemical reagents concentration for a given treatment time	224
6.4	Example of using MICP chart for determining suitable	
	treatment duration for a given reagent concentration	225
6.5	Effect of curing on MICP treated fine grained soil	227
6.6	Calcite distribution of MICP treated soil samples at different	
	part of the sample under the effect of curing	229

LIST OF ABBREVIATIONS

ACC	_	Amorphous Calcium Carbonate
AEC	_	Anion Exchange Capacity
ATCC	_	American Type Culture Collection
BIM	_	Biologically Induced Mineralization
BCM	_	Biologically Controlled Mineralization
BSCS	_	British Soil Classification System
CEC	_	Cation Exchange Capacity
DDL	_	Diffuse Double layer
DIC	_	Dissolve Inorganic Carbon
DTA	_	Differential Thermal Analysis
FESEM	_	Field Emission Scanning Electron Microscope
FTIR	_	Fourier Transform Infrared Spectroscopy
LOI	_	Loss of Ignition
LOI LL	-	Loss of Ignition Liquid Limit
	-	-
LL		Liquid Limit
LL MICP	 	Liquid Limit Microbial Induced Calcite Precipitation
LL MICP MEOR		Liquid Limit Microbial Induced Calcite Precipitation Microbially Enhanced Oil Recovery
LL MICP MEOR OC		Liquid Limit Microbial Induced Calcite Precipitation Microbially Enhanced Oil Recovery Organic Content
LL MICP MEOR OC PI		Liquid Limit Microbial Induced Calcite Precipitation Microbially Enhanced Oil Recovery Organic Content Plasticity Index
LL MICP MEOR OC PI PL		Liquid Limit Microbial Induced Calcite Precipitation Microbially Enhanced Oil Recovery Organic Content Plasticity Index Plastic Limit
LL MICP MEOR OC PI PL PVC		Liquid Limit Microbial Induced Calcite Precipitation Microbially Enhanced Oil Recovery Organic Content Plasticity Index Plastic Limit Polyvinyl Chloride
LL MICP MEOR OC PI PL PVC UCS		Liquid Limit Microbial Induced Calcite Precipitation Microbially Enhanced Oil Recovery Organic Content Plasticity Index Plastic Limit Polyvinyl Chloride Unconfined Compressive Strength

- USCS Unified Soil Classification System
- UV Ultraviolet

LIST OF SYMBOLS

$C_{\mathbf{c}}$	_	Compression Index
$C_{\mathbf{r}}$	—	Recompression Index
$k_{\mathbf{h}}$	_	Hydraulic Conductivity
$S_{\mathbf{c}}$	_	Total Consolidation Settlement
$ ho_{ m d\ max}$	_	Maximum Dried Density
w_{opt}	_	Optimum Moisture Content
$P_{\mathbf{s}}$	_	Pre-consolidation Stress
$G_{\mathbf{s}}$	_	Specific Gravity

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Example Datasheet for Tropical Residual Soil	252
В	Example of MICP Data Sheet	262

CHAPTER 1

INTRODUCTION

1.1 Background of Study

The rapid and unprecedented population growth rate of the modern world's population are fuelling the demand for faster infrastructure development to meet the ever-growing societal needs. However, its expansion is often limited by geographical boundaries, undesired soil condition, and also the unavailability of competent soil upon which facilities can be constructed. Fortunately, there exists different type of soil stabilization or soil improvement methods that are able to treat and improve the quality and the engineering properties of soil to enable infrastructure construction.

In Malaysia, the major problem specific to tropical residual soil is the high annual rainfall which infiltrates into slopes and causes erosion, landslide and slope failure at hillside area and highway (Huat *et al.*, 2012). The strength and compressibility of tropical residual soil arise from the effect of cementation of secondary deposition, but this is often disrupted by the brittleness of the deposit (Kamarudin, 2004). To overcome this, a more effective and environmental friendly soil improvement such as bio mediated soil stabilization has to be examined to understand its feasibility.

The current massive soil stabilization methods often come with some environmental issues. For example, the production of cement used pervasively for construction and to improve ground condition is believed to be one of the major contributors to carbon release and global warming through the burning of fossil fuels (DeJong *et al.*, 2010). Furthermore, most of the grouting injection fluid used for chemical soil stabilization is toxic and hazardous to the environment and public (Karol, 2003). Therefore, a more sustainable and environmental friendly method is needed to replace and improve the conventional soil improvement techniques. In this regard, the bio mediated soil stabilization method is a promising soil improvement approach since it utilizes biological processes to alter the engineering properties of soil such as strength, stiffness, and permeability.

Bio mediated soil stabilization, also known as Microbial Induced Calcite Precipitation (MICP), is a new and innovative application in the geotechnical engineering field that has attracted the attention and great interest of researchers worldwide. Similar rigour can be seen in research works on microbial induced carbonate precipitation with varying type of soil, injection depth and bacteria as well as methods to improve and practically implemented at site being studied. In fact, the usage of microbial induced precipitation is not new in many industries. It has been applied to treat contaminated soils (Khachatoorian *et al.*, 2003); stabilize metal (Etemadi *et al.*, 2003); recover reservoir oil (Nelson and Launt, 1991); improve the strength of concrete and cement mortar (Ghosh *et al.*, 2005); retrofit and fix cracks in concrete (Van Tittelboom *et al.*, 2010); and others as described in Chapter 2.

DeJong *et al.* (2010) were among the researchers who had successfully started the application of microbial inducted precipitation in geotechnical engineering to alter the permeability and shear strength of a sandy soil. In relation to MICP of tropical residual soil, Soon *et al.* (2014) conducted a series of MICP treatments on a tropical residual soil (sandy silt) using *Bacillus megaterium*. They discovered that the unconfined compressive strength (UCS) improved by 69% and the permeability reduced by 90% compared to the untreated soil.

Although numerous studies have been published, literature on biomediated soil stabilization mostly remains at the research stage due to inconsistencies in results reported. The limitations of this approach are most commonly associated with the soil type, the bacteria compatibility, and the complexity of the reactions. To this date, these limitations are still unanswered and remain one of the biggest challenges to researchers (Ivanov and Chu, 2008).

1.2 Problem Description

Most studies on MICP technique are done on sandy soil rather than fine grained soil. Although a few studies have been published on fine-grained soils and tropical residual soil (Soon *et al.*, 2014; Lee *et al.*, 2013), the results are inconsistent and remained at the laboratory stage due to uncertainties and complexity of tropical residual soil, soil geochemistry, bacteria, and other environmental factors.

On the other hand, *Sporosarcina pasteurii* and *Bacillus subtilis* have been widely used as a urea-hydrolysing bacterium in numerous MICP studies, but its application and feasibility in MICP treatment of typical fine-grained soils has never been examined.

The sizes of soil particle and pore throat are the main attributes in determining the feasibility of the MICP treatment. The migration of the chemical reagents and bacteria into the soil might be hindered by the fine grained soil and subsequently affect the calcite precipitation distribution along the sample length. For this reason, the application of MICP technique for fine grained soil remains largely an unexplored territory.

Not only that, the small clay pore size and its low permeation rate for nutrient and oxygen tend to limit cell growth on the particles' surface. This makes the usage of injection method inevitable despite the inherent problem of uneven calcite distribution. In order to reach a uniform calcite distribution, the MICP parameters such as chemical reagents, treatment duration, and reagents flow pressure have to be optimised, controlled and counterbalanced

The implication from the problems stated above on the bacteria and other environmental factors shows that there is no one recipe or typical formulation applicable to all soil types for MICP treatment. Different soil type requires different combination of MICP parameters due to the variations in mineralogy, pH, and geochemistry of the soil.

1.3 Objectives

The aim of this research is to improve the engineering properties of tropical residual soil through the utilization of the bacteria and chemical reagents. The main objectives in this research are listed as below.

- (a) To determine the feasibility and relationship of MICP treatment by using two different bacteria strains, *Sporosarcina pasteurii* (ATCC[®] 11859TM), and *Bacillus subtilis* (ATCC[®] 55422TM) to improve shear strength and examine change in permeability of treated tropical residual soils.
- (b) To optimize MICP treatment and examine subsequent changes in strength, calcite distribution and microstructure of the treated tropical residual soil with reference to different MICP parameters, i.e., treatment duration, reagent concentration, and reagent flow pressure.
- (c) To establish a design chart for MICP treatment of tropical residual soil and to examine the effects of curing period on MICP treated soil.

1.4 Scope of Study

This bio-mediated soil stabilization research focused on small scale laboratory physical modelling. Tropical reddish residual clayey soil retrieved from Universiti Teknologi Malaysia (UTM) at Skudai, Johor and passing 2 mm sieve was used. The length and diameter of MICP treated cylindrical sample were 100 and 50 mm, respectively.

The MICP treatment system was designed based on continuous injection method in which the chemical regents was injected uninterrupted throughout the treatment duration. This treatment was conducted in an air-conditioned room with temperature controlled at 25.5°C. *Sporosarcina pasteurii* (ATCC[®] 11859TM) and *Bacillus subtilis* (ATCC[®] 55422TM) were the bacteria used. It was hypothesized that both *Sporosarcina pasteurii* and *Bacillus subtilis* are feasible for MICP treatment of tropical residual soil. The formation of calcite tend to increase the shear strength of the soil after treatment. However, it decreases the permeability of the treated soil. Geotechnical engineering properties of the bio-mediated treated soil such as permeability and shear strength were examined extensively with every recorded changes further studied and compared with those of the untreated soil samples. In order to understand the mechanism and relationship of each of the MICP components, six different treatment conditions were set up, which were:

- 1. Treatment with chemical reagents only
- 2. Treatment with nutrient broth only
- 3. Treatment with inclusion of *Sporosarcina pasteurii* only
- 4. Treatment with inclusion of *Bacillus subtilis* only
- 5. MICP treatment using *Sporosarcina pasteurii*
- 6. MICP treatment using *Bacillus subtilis*

The three most important parameters in this MICP treatment were reagents concentration (0.15, 0.25, 0.35 and 0.45 M), reagent flow concentration (0.1, 0.2, 0.3, and 0.4 bars), and treatment duration (24, 48, 72 and 96 hours). Each parameter was altered to reach optimization and examine their effects on the unconfined compressive strength (UCS), microstructure, and calcite distribution of the treated soil sample. Additionally, the curing period was set at seven, 14, 20, and 28 days to examine the long term performance of *Sporosarcina pasteurii* on the MICP treated soil.

This study has also established the MICP design chart of tropical residual soil for strength improvement using *Sporosarcina pasteurii* and *Bacillus subtilis* with reagent concentration set at 0.15, 0.25, 0.35, and 0.45 M and treatment duration fixed at 24, 36, and 48 hours only.

1.5 Structure of Thesis

This thesis consists of seven chapters: Introduction (Chapter 1); Literature Review (Chapter 2); Methodology (Chapter 3); Variation of MICP treatment conditions (Chapter 4); Effect of chemical reagents flow pressure, concentration, and treatment duration for MICP of *Sporosarcina pasteurii* and *Bacillus subtilis* (Chapter 5); The MICP treatment design charts and effect of curing on MICP treatment (Chapter 6); and Conclusion and Recommendation (Chapter 7). Concluding remarks are provided at the end of each chapter to highlight and summarise the findings and outcomes of each chapter.

Chapter 1 is the introductory chapter on bio-mediated soil stabilization. It also highlights the research background and problems; objectives; scope; and limitation of the present research in relation to bio-mediated soil improvement.

Review of literatures is presented in Chapter 2 with the main focus put on the origin of tropical residual soils and bio-mediated soil stabilization. Reviews on the bacteria, MICP processes, MICP treatment on different type of soil, engineering application, and factors are also included and discussed.

Research methodology, experiment procedures, material preparation, bacteria cultivation and maintenance process and equipment specification exercised in this study are explained and presented in Chapter 3. Physical and geotechnical properties test were performed in accordance to procedures outlined by the British Standard. However, for those testing methods which are not included in any specific standard, general accepted methods established by researchers have been used in the determination of parameters such as calcite determination, CEC, X-ray Fluorescence (XRF) and X-ray Diffraction (XRD) analyses.

The results and outcome of this study are divided and discussed separately in 3 different chapters, i.e., Chapter 4, Chapter 5, and Chapter 6. Chapter 4 presents the physical and geotechnical properties of tropical residual soil. It also presents an in depth discussion on each MICP component, i.e., bacteria, chemical reagents, nutrient broth, and tropical residual soil. Results for both samples treated by two different bacteria, *Sporosarcina pasteurii* and *Bacillus subtilis* were also studied and discussed. The main subjects discussed in this chapter are UCS and permeability of the MICP treated soil.

Chapter 5 mainly focused on the optimization of MICP treatment using *Sporosarcina pasteurii* and *Bacillus subtilis*. Additionally, the effect of MICP parameters such as chemical reagents flow pressure, concentration, and treatment duration for both MICP of *Sporosarcina pasteurii* and *Bacillus subtilis* were examined. The discussion mainly focused on the calcite distribution pattern, effect of calcite precipitation on UCS, effectiveness of calcite precipitation, and some comparisons with other MICP studies.

Chapter 6 compiles the results and outcome in this study for the MICP design chart establishment. It should be noted that the MICP treatment design charts, which are based on *Sporosarcina pasteurii* and *Bacillus subtilis*, only serve as a guideline, information and reference for MICP treatment of tropical residual soil. Nevertheless, the charts are useful for determining the optimum treatment duration for a given reagent concentration and vice versa. In addition, the effect of curing on the MICP treated soil is also examined and discussed in Chapter 6.

Lastly, Chapter 7 concludes the findings and outcomes of this study. Recommendations for future research are also given in this last chapter.

1.6 Significance of Study

This particular research is crucial for the evolution of geotechnical ground improvement technique to provide a more environmental friendly alternative to conventional methods. The proposed MICP technique has the potential to resolve geotechnical problems including healing of crack surface of lime stabilized soil; sealing of tension crack of a slope; and coating for road embankment to prevent water infiltration and for slope protection (where the early strengthening of soil is not a concern). Besides, the exceptional advantage of using MICP treatment with bacteria is also able to heal degraded calcite bonding after deformation; a trait not common in conventional methods.

The research provides a more profound understanding and knowledge for biomediated soil stabilization on tropical residual soil. This research has evaluated the feasibility of *Sporosarcina pasteurii* and *Bacillus subtilis* in MICP treatment of tropical residual fine-grained soil, which has not been reported and attempted before the time of this writing. The application of these two bacteria in MICP treatment had been proven favourable and effective in UCS and permeability improvement. The research also provides more understanding on the some important MICP parameters that affect calcite distribution.

Another contribution is in a more in-depth understanding on the effects of calcite distribution on the strength development of MICP treated soils. This research has also evaluated the effect of curing period on UCS. The outcome of this research have been assembled to establish a design charts for the bio-mediated soil stabilization of tropical residual soil.

REFERENCES

- Abd-el Malek, Y. and Rizk, S. (1963). Bacterial sulphate reduction and the development of alkalinity. II. Laboratory experiments with soils. *Journal of Applied Bacteriology*. 26(1), 14–19.
- Abood, T. T., Kasa, A. B. and Chik, Z. B. (2007). Stabilisation of silty clay soil using chloride compounds. *Journal of engineering science and technology*. 2(1), 102–110.
- Addadi, L., Raz, S., Weiner, S. *et al.* (2003). Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization. *Advanced Materials*. 15(12), 959–970.
- Ahmad, K. B., Taha, M. R. and Kassim, K. A. (2010). Electrokinetic treatment on a tropical residual soil. *Proceedings of the ICE-Ground Improvement*. 164(1), 3–13.
- Ahmed, A. and Hussain, I. (2008). Enhancing the Stability of Fine Grained Soil Using Biological Approach. *Electronic Journal of Geotechnical Engineering*. 13, 1–11.
- Aitken, M. D., Massey, I. J., Chen, T. and Heck, P. E. (1994). Characterization of reaction products from the enzyme catalyzed oxidation of phenolic pollutants. *Water Research*. 28(9), 1879–1889.
- Al Qabany, A., Mortensen, B., Martinez, B., Soga, K. and DeJong, J. (2011). Microbial carbonate precipitation: correlation of S-wave velocity with calcite precipitation. *Geo-Frontiers 2011*, 3993–4001.
- Al Qabany, A. and Soga, K. (2013). Effect of chemical treatment used in MICP on engineering properties of cemented soils. *Géotechnique*. 63(4), 331.
- Al-Thawadi, S. M. (2011). Ureolytic bacteria and calcium carbonate formation as a mechanism of strength enhancement of sand. *J. Adv. Sci. Eng. Res.* 1(1), 98–114.
- Aminaton, M., Fauziah, K. and Khairul Nizar, M. (2002). Mineralogy and Microfabric of Residual Soils at Eastern region of Peninsular Malaysia. In *The 2nd World Engineering Congress 2002*. Kuching, Sarawak: Universiti Putra Malaysia, 282–287.
- Arasan, S. (2010). Effect of chemicals on geotechnical properties of clay liners: a review. *Research Journal of Applied Sciences, Engineering and Technology*. 2(8), 765–775.

- Arshad, M. and Coen, G. (1992). Characterization of soil quality: physical and chemical criteria. *American Journal of Alternative Agriculture*. 7(1-2), 25–31.
- Arunachalam, K. D., Sathyanarayanan, K., Darshan, B. and Raja, R. B. (2010). Studies on the characterisation of Biosealant properties of Bacillus sphaericus. *International Journal of Engineering Science and Technology*. 2(3), 270–277.
- Atlas, R. M. (2010). Handbook of microbiological media. London: CRC press.
- Azadi, M. and Pouri, S. (2016). Estimation of Reconstructed Strength of Disturbed Biologically Cemented Sand Under Unconfined Compression Tests. *Arabian Journal for Science and Engineering*, 1–8.
- Banerjee, S. and Joshi, S. (2014). Ultrastructural analysis of calcite crystal patterns formed by biofilm bacteria associated with cave speleothems. *Journal of Microscopy and Ultrastructure*. 2(4), 217–223.
- Bang, S., Lippert, J., Yerra, U., Mulukutla, S. and Ramakrishnan, V. (2010). Microbial calcite, a bio-based smart nanomaterial in concrete remediation. *International Journal* of Smart and Nano Materials. 1(1), 28–39.
- Barnes-Svarney, P. and Svarney, T. (2014). *The Handy Biology Answer Book*. United States: Visible Ink Press.
- Bartlett, R. W. (1998). *Solution mining: Leaching and fluid recovery of materials*. The Netherlands: Psychology Press.
- Baskar, S., Baskar, R., Lee, N. and Theophilus, P. (2009). Speleothems from Mawsmai and Krem Phyllut caves, Meghalaya, India: some evidences on biogenic activities. *Environmental geology*. 57(5), 1169–1186.
- Bawa, K. (1957). Laterite soils and their engineering characteristics. *Journal of Soil Mechanics & Foundations Division*. 83(SM4), 1428–1–1428–15.
- Berry, L. G., for Diffraction Data, I. C. and on Powder Diffraction Standards, J. C. (1974). *Selected powder diffraction data for minerals. Data book.* na.
- Beveridge, T. J. (1989). Role of cellular design in bacterial metal accumulation and mineralization. *Annual Reviews in Microbiology*. 43(1), 147–171.
- Bienz, D. R. (1993). The why and how of home horticulture. London: Macmillan.
- Bin, L., Ye, C., Lijun, Z. and Ruidong, Y. (2008). Effect of microbial weathering on carbonate rocks. *Earth Science Frontiers*. 15(6), 90–99.
- Blight, G. E. and Leong, E. C. (2012). Mechanics of residual soils. London: CRC Press.
- Bohn, H. L., Myer, R. A. and O'Connor, G. A. (2002). *Soil Chemistry*. New York: John Wiley & Sons.

- Bot, A. and Benites, J. (2005). *The importance of soil organic matter: key to droughtresistant soil and sustained food production*. Canada: Food & Agriculture Org.
- Brady, N. and Weil, R. (2008). *The nature and properties of soils*. United States of America: Pearson/Prentice Hall.
- Brand, E. W. and Phillipson, H. B. (1985). Review of international practice for the sampling and testing of residual soils. In :Phillipson, H. B. e. (Ed.) Sampling & *Testing of Residual Soils*. (pp. 7–22). Hong Kong: Scorpion Press.
- British Standards Institution (1990a). British Standard Methods of Test for Soils for Civil Engineering Purposes, BS1377- Part 2: Classification Tests. BSI, London.
- British Standards Institution (1990b). British Standard Methods of Test for Soils for Civil Engineering Purposes, BS1377- Part 4: Compaction-related test. BSI, London.
- British Standards Institution (1990c). British Standards Methods of test for soils for civil engineering purposes. BS1377-Part 3: Chemical and Electro-Chemical Tests. BSI, London.
- British Standards Institution (1990d). British Standards Methods of test for soils for civil engineering purposes. BS1377-Part 7: Shear strength tests (total stress). BSI, London.
- British Standards Institution (1999). Code of Practice for site Investigations, incorporating Amendment 2 (2010).BS5930. BSI, London.
- Canfora, L., Bacci, G., Pinzari, F., Papa, G. L., Dazzi, C. and Benedetti, A. (2014). Salinity and bacterial diversity: to what extent does the concentration of salt affect the bacterial community in a saline soil? *PloS one*. 9(9), e106662.
- Castanier, S., Le Métayer-Levrel, G., Orial, G., Loubière, J.-F. and Perthuisot, J.-P. (2000). Bacterial carbonatogenesis and applications to preservation and restoration of historic property. In *Of microbes and art*. (pp. 203–218). USA: Springer.
- Chakraborty, D., Agarwal, V., Bhatia, S. and Bellare, J. (1994). Steady-state transitions and polymorph transformations in continuous precipitation of calcium carbonate. *Industrial & engineering chemistry research*. 33(9), 2187–2197.
- Che-Ani, A., Shaari, N., Sairi, A., Zain, M. and Tahir, M. (2009). Rainwater harvesting as an alternative water supply in the future. *European Journal of Scientific Research*. 34(1), 132–140.
- Cheng, L. and Cord-Ruwisch, R. (2012). In situ soil cementation with ureolytic bacteria by surface percolation. *Ecological Engineering*. 42, 64–72.
- Cheng, L. and Cord-Ruwisch, R. (2014). Upscaling effects of soil improvement by microbially induced calcite precipitation by surface percolation. *Geomicrobiology*

Journal. 31(5), 396-406.

- Cheng, L., Cord-Ruwisch, R. and Shahin, M. a. (2013). Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation. *Canadian Geotechnical Journal*. 50(October 2012), 81–90.
- Cheng, L. and Shahin, M. (2015). Assessment of different treatment methods by microbial-induced calcite precipitation for clayey soil improvement. In 68th Canadian Geotechnical Conference. 20 September 2015. GeoQuebec 2015, Quebec, Canada: Canadian Geotechnical Society.
- Chesworth, W. (2008). Encyclopedia of soil science. Netherlands: Springer.
- Chu, J., Ivanov, V., Naeimi, M., Li, B. and Stabnikov, V. (2011). Development of microbial geotechnology in Singapore. *Proceedings of Geofrontiers 2011: Advances* in Geotechnical Engineering, 4070–4078.
- Chu, J., Ivanov, V., Naeimi, M., Stabnikov, V. and Liu, H.-L. L. (2013a). Optimization of calcium-based bioclogging and biocementation of sand. *Acta Geotechnica*. 9(2), 277–285.
- Chu, J., Ivanov, V., Stabnikov, V. and Li, B. (2013b). Microbial method for construction of an aquaculture pond in sand. *Géotechnique*. 63(10), 871–875.
- Claus, D. (1986). Genus Bacillus Cohn 1872, 174 ^ <AL >. Bergey's manual of systematic bacteriology. 2, 1105–1139.
- Cuthbert, M. O., Riley, M. S., Handley-Sidhu, S., Renshaw, J. C., Tobler, D. J., Phoenix, V. R. and Mackay, R. (2012). Controls on the rate of ureolysis and the morphology of carbonate precipitated by S. Pasteurii biofilms and limits due to bacterial encapsulation. *Ecological Engineering*. 41, 32–40.
- Datta, S. K. G. M. (2005). *Geotechnical engineering*. India: Tata McGraw-Hill Education.
- de Brito Galvão, T. C., Elsharief, A. and Simões, G. F. (2004). Effects of lime on permeability and compressibility of two tropical residual soils. *Journal of environmental engineering*. 130(8), 881–885.
- De Muynck, W., De Belie, N. and Verstraete, W. (2010a). Microbial carbonate precipitation in construction materials: a review. *Ecological Engineering*. 36(2), 118–136.
- De Muynck, W., Debrouwer, D., De Belie, N. and Verstraete, W. (2008). Bacterial carbonate precipitation improves the durability of cementitious materials. *Cement and concrete research*. 38(7), 1005–1014.
- De Muynck, W., Verbeken, K., De Belie, N. and Verstraete, W. (2010b). Influence

of urea and calcium dosage on the effectiveness of bacterially induced carbonate precipitation on limestone. *Ecological Engineering*. 36(2), 99–111.

- Decho, A. W. (2010). Overview of biopolymer-induced mineralization: What goes on in biofilms? *Ecological Engineering*. 36, 137–144.
- DeJong, J. T., Fritzges, M. B. and Nüsslein, K. (2006). Microbially induced cementation to control sand response to undrained shear. *Journal of Geotechnical* and Geoenvironmental Engineering. 132(11), 1381–1392.
- DeJong, J. T., Mortensen, B. M., Martinez, B. C. and Nelson, D. C. (2010). Bio-mediated soil improvement. *Ecological Engineering*. 36(2), 197–210.
- Dhami, N. K., Reddy, M. S. and Mukherjee, A. (2013). Biomineralization of calcium carbonates and their engineered applications: a review. *Front. Microbiol.* 4(314), 10–3389.
- Dick, J., De Windt, W., De Graef, B., Saveyn, H., Van der Meeren, P., De Belie, N. and Verstraete, W. (2006). Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species. *Biodegradation*. 17(4), 357–367.
- Dolinar, B. and ŠKRABL, S. (2013). Atterberg limits in relation to other properties of fine-grained soils. *Acta Geotechnica Slovenica*. 2, 1–13.
- Dreimanis, A. (1962). Quantitative gasometric determination of calcite and dolomite by using Chittick apparatus. *Journal of Sedimentary Research*. 32(3).
- Ehrlich, H. L. and Newman, D. K. (2008). Geomicrobiology. London: CRC press.
- Eisazadeh, A., Kassim, K. A. and Nur, H. (2013). Morphology and BET surface area of phosphoric acid stabilized tropical soils. *Engineering Geology*. 154, 36–41.
- Esawy, M. A., Mansour, S. H., Ahmed, E. F., Hassanein, N. M. and El Enshasy, H. A. (2012). Characterization of extracellular dextranase from a novel halophilic Bacillus subtilis NRC-B233b a mutagenic honey isolate under solid state fermentation. *Journal* of Chemistry. 9(3), 1494–1510.
- Etemadi, O., Petrisor, I. G., Kim, D., Wan, M.-W. and Yen, T. F. (2003). Stabilization of metals in subsurface by biopolymers: laboratory drainage flow studies. *Soil and Sediment Contamination*. 12(5), 647–661.
- Far, S. Z., Kassim, K., Eisazadeh, A. and Khari, M. (2013). An evaluation of the tropical soils subjected Physicochemical stabilization for Remote Rural Roads. *Procedia Engineering*. 54, 817–826.
- Ferrer, M. R., Quevedo-Sarmiento, J., Rivadeneyra, M. A., Bejar, V., Delgado, R. and Ramos-Cormenzana, A. (1988). Calcium carbonate precipitation by two groups of moderately halophilic microorganisms at different temperatures and salt

concentrations. Current Microbiology. 17(4), 221-227.

- Ferris, F., Stehmeier, L., Kantzas, A., Mourits, F. *et al.* (1996). Bacteriogenic mineral plugging. *Journal of Canadian Petroleum Technology*. 35(8), 56–61.
- Ferris, F. G., Fyfe, W. and Beveridge, T. (1987). Bacteria as nucleation sites for authigenic minerals in a metal-contaminated lake sediment. *Chemical Geology*. 63(3), 225–232.
- Fookes, P. G. (1997). Tropical Residual Soils: A Geological Society Engineering Group Working Party Revised Report. Geological Society of London.
- Fortin, D., Ferris, F. and Beveridge, T. (1997). Surface-mediated mineral development by bacteria. *Reviews in Mineralogy and Geochemistry*. 35(1), 161–180.
- Frankel, R. B. and Bazylinski, D. A. (2003). Biologically induced mineralization by bacteria. *Reviews in Mineralogy and Geochemistry*. 54(1), 95–114.
- Fujita, Y., Ferris, F. G., Lawson, R. D., Colwell, F. S. and Smith, R. W. (2000). Subscribed content calcium carbonate precipitation by ureolytic subsurface bacteria. *Geomicrobiology Journal*. 17(4), 305–318.
- Gadd, G. M. (2010). Metals, minerals and microbes: geomicrobiology and bioremediation. *Microbiology*. 156(3), 609–643.
- Garrett, H. (2014). *Organic lawn care: growing grass the natural way*. United State of America: University of Texas Press.
- Garrett, T. R., Bhakoo, M. and Zhang, Z. (2008). Bacterial adhesion and biofilms on surfaces. *Progress in Natural Science*. 18(9), 1049–1056.
- Garrity, G. M., Bell, J. A. and Lilburn, T. G. (2004). Taxonomic outline of the prokaryotes. Bergey's manual of systematic bacteriology. *Springer, New York, Berlin, Heidelberg.*
- Gat, D., Tsesarsky, M. and Shamir, D. (2011). Ureolytic Calcium Carbonate Precipitation in the Presence of Non-Ureolytic Competing Bacteria. In *Geo-Frontiers* 2011@ sAdvances in Geotechnical Engineering. ASCE, 3966–3974.
- Ghosh, P., Mandal, S., Chattopadhyay, B. and Pal, S. (2005). Use of microorganism to improve the strength of cement mortar. *Cement and Concrete Research*. 35(10), 1980–1983.
- Gidigasu, M. (2012). Laterite soil engineering: pedogenesis and engineering principles.vol. 9. Amsterdam: Elsevier.
- Gollapudi, U., Knutson, C., Bang, S. and Islam, M. (1995). A new method for controlling leaching through permeable channels. *Chemosphere*. 30(4), 695–705.

- Gurbuz, A., Sari, Y. D. and Yuksekdag, Z. N. (2015). Bacteria-Induced Cementation in Sandy Soils. *Geomicrobiology Journal*. 32(9), 853–859.
- Gurbuz, A., Sari, Y. D., Yuksekdag, Z. N. and Cinar, B. (2013). Cementation in a matrix of loose sandy soil using biological treatment method. *African Journal of Biotechnology*. 10(38), 7432–7440.
- Hall-Stoodley, L., Costerton, J. W. and Stoodley, P. (2004). Bacterial biofilms: from the natural environment to infectious diseases. *Nature Reviews Microbiology*. 2(2), 95–108.
- Hammes, F. and Verstraete, W. (2002). Key roles of pH and calcium metabolism in microbial carbonate precipitation. *Reviews in environmental science and biotechnology*. 1(1), 3–7.
- Harkes, M. P., van Paassen, L. A., Booster, J. L., Whiffin, V. S. and van Loosdrecht, M. C. M. (2010). Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement. *Ecological Engineering*. 36, 112– 117.
- Hatibu, N. and Hettiaratchi, D. (1993). The transition from ductile flow to brittle failure in unsaturated soils. *Journal of agricultural engineering research*. 54(4), 319–328.
- Head, K. (1992). Manual of Soil Laboratory Testing Vol. 1: Soil classification and compaction tests, Second edition. London: Pentech Press.
- Head, K. and Epps, R. (2011). Vol. 2: Permeability, shear strength and compressibility tests, Third edition. Caithness: Whittles Publishing.
- Heck, P., Massey, I. and Aitken, M. D. (1992). Toxicity of reaction products from enzymatic oxidation of phenolic pollutants. *Water Science and Technology*. 26(9-11), 2369–2371.
- Hillel, D. (1998). *Environmental soil physics: Fundamentals, applications, and environmental considerations*. United States of America: Academic press.
- Hoorman, J. J. (2011). The Role of Soil Bacteria. *The Ohio State University Extension*, 1–4.
- Huang, P. M., Li, Y. and Sumner, M. E. (2011). *Handbook of soil sciences: resource management and environmental impacts*. London: CRC Press.
- Huat, B. B., Toll, D. G. and Prasad, A. (2012). *Handbook of tropical residual soils engineering*. London: CRC Press.
- Ismail, M. A., Joer, H. A., Sim, W. H. and Randolph, M. F. (2002). Effect of cement type on shear behavior of cemented calcareous soil. *Journal of Geotechnical and Geoenvironmental Engineering*. 128(6), 520–529.

- Ivanov, V. and Chu, J. (2008). Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. *Reviews in Environmental Science and Bio/Technology*. (2), 139–153.
- Ivanov, V., Chu, J. and Stabnikov, V. (2015). Basics of construction microbial biotechnology. In *Biotechnologies and biomimetics for civil engineering*. (pp. 21–56). USA: Springer.
- Janssen, P. H. (2006). Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. *Applied and environmental microbiology*. 72(3), 1719–1728.
- Jonkers, H. M., Thijssen, A., Muyzer, G., Copuroglu, O. and Schlangen, E. (2010). Application of bacteria as self-healing agent for the development of sustainable concrete. *Ecological engineering*. 36(2), 230–235.
- Kamarudin, A. (2004). *Improvement of a Tropical Residual Soil by Electrokinetic Process*. Ph.D. Thesis. University Teknologi Malaysia.
- Kaniraj, S. R. (1988). *Design aids in soil mechanics and foundation engineering*. India: Tata McGraw-Hill.
- Karol, R. H. (2003). Chemical grouting and soil stabilization, revised and expanded. vol. 12. London: CRC Press.
- Kassim, A., Gofar, N., Lee, L. M. and Rahardjo, H. (2012). Modeling of suction distributions in an unsaturated heterogeneous residual soil slope. *Engineering Geology*. 131-132, 70–82.
- Kassim, K. and Kok, K. (1999). Mix design for lime Modification and Stabilisation. In *Proceeding of 5th Geotechnical Engineering Conference*. November 1999. GEOTROPIKA 99, University Teknologi Malaysia, 235–244.
- Khachatoorian, R., Petrisor, I. G., Kwan, C.-C. and Yen, T. F. (2003). Biopolymer plugging effect: Laboratory-pressurized pumping flow studies. *Journal of Petroleum Science and Engineering*. 38(1), 13–21.
- Kholghifard, M., Ahmad, K., Ali, N., Kassim, A. and Kalatehjari, R. (2014). Collapse/Swell Potential of Residual Laterite Soil Due to Wetting and Drying-wetting Cycles. *National Academy Science Letters*. 37(2), 147–153.
- Kunst, F., Ogasawara, N., Moszer, I., Albertini, A., Alloni, G., Azevedo, V., Bertero, M., Bessieres, P., Bolotin, A., Borchert, S. *et al.* (1997). The complete genome sequence of the gram-positive bacterium Bacillus subtilis. *Nature*. 390(6657), 249–256.
- Lammert, J. (2007). *Techniques in microbiology: a student handbook*. vol. 10. United States of America: Prentice Hall.

- Latifi, N., Marto, A. and Eisazadeh, A. (2015). Physicochemical behavior of tropical laterite soil stabilized with non-traditional additive. *Acta Geotechnica*, 1–11.
- Lee, M. L., Ng, W. S. and Tanaka, Y. (2013). Stress-deformation and compressibility responses of bio-mediated residual soils. *Ecological Engineering*. 60, 142–149.
- Lin, H., Suleiman, M. T., Jabbour, H. M. and Brown, D. G. (2015). Enhancement of pervious concrete pile subjected to uplift load using microbial induced carbonate precipitation. In *IFCEE 2015*. American Society of Civil Engineers, 775–783.
- Little, A. (1969). The engineering classification of residual tropical soils. In Proc. Seventh International conference on Soil Mechanics and Foundation engineering. Mexico city, 1:1–10.
- Liu, C., Evett, J. B. *et al.* (2005). *Soils and foundations*. United States: Prentice Hall International.
- Loeppert, R. H. and Suarez, D. L. (1996). Carbonate and Gypsum. *Methods of Soil Analysis Part 3 - Chemical Methods*, 437–474.
- Lu, N. and Likos, W. J. (2013). Origin of Cohesion and Its Dependence on Saturation for Granular Media. In *Poromechanics V@ sProceedings of the Fifth Biot Conference on Poromechanics*. 1669–1675.
- Lu, W., Qian, C. and Wang, R. (2010). Study on soil solidification based on microbiological precipitation of CaCO3. *Science China Technological Sciences*. 53(9), 2372–2377.
- Madigan, M. T., Martinko, J. M., Dunlap, P. V. and Clark, D. P. (2008). Brock Biology of microorganisms 12th edn. *International Microbiology*. 11, 65–73.
- Martin, D., Dodds, K., Ngwenya, B. T., Butler, I. B. and Elphick, S. C. (2012). Inhibition of Sporosarcina pasteurii under anoxic conditions: implications for subsurface carbonate precipitation and remediation via ureolysis. *Environmental science & technology*. 46(15), 8351–8355.
- Martinez, B. (2011). Upscaling of Microbial Induced Calcite Precipitation in 0.5m Column:Experimental and Modeling Results. *Geo-Frontiers 2011*, 4049–4059.
- Martinez, B., DeJong, J., Ginn, T., Montoya, B. M., Barkouki, T., Hunt, C., Tanyu, B. and Major, D. (2013). Experimental optimization of microbial-induced carbonate precipitation for soil improvement. *Journal of Geotechnical and Geoenvironmental Engineering*. 139(4), 587–598.
- Martinez, B. C. and DeJong, J. T. (2009). Bio-mediated soil improvement: load transfer mechanisms at the micro-and macro-scales. In Advances in Ground Improvement@ sResearch to Practice in the United States and China. ASCE, 242–251.

- Marto, A., Kassim, F. and Mohd Yusof, K. (2001). The chemical composition of Granitic Soil from Southern and Eastern Regions of Peninsular Malaysia. In *Proceeding of* 6th Geotechnical Engineering Conference. 5-7 November 2001. GEOTROPIKA 2001, Universiti Teknologi Malaysia, 57–69.
- Marto, A., Kassim, F. and Mohd Yusof, K. (2002a). Engineering Characteristic of Residual Granite Soils of Southern Peninsular Malaysia. In *Proceeding of the Research Seminar on Material and Construction*. 29-30 October 2002. Universiti Teknologi Malaysia, 315–325.
- Marto, A., Kassim, F. and Mohd Yusof, K. (2002b). Mineralogy, Microstructure and Chemical Compositions of Granitic Soils at Central Region of Peninsular Malaysia. In *Proceeding of the Research Seminar on Material and Construction*. 29-30 October 2002. Universiti Teknologi Malaysia, 352–366.
- Md. Noor, M. J. and Hadi, B. (2012). Effect of soaking on stability of cut slope in granitic residual soil. In 5th Asia-Pacific Conference on Unsaturated Soils 2012, vol. 2. ISBN 9781622762644, 607–612.
- Misra, K., Subramanian, S. B., Brar, S. K., Tyagi, R. and Surampalli, R. (2007). Bioremediation with Bacteria and Enzymes. In *Remediation Technologies for Soils and Groundwater*. ASCE, 223–258.
- Mitchell, J. and Soga, K. (2005). *Fundamentals of soil behavior*. Ed. 3. New York: John Wiley & Sons Ltd.
- Mitchell, J. K. and Santamarina, J. C. (2005). Biological considerations in geotechnical engineering. *Journal of Geotechnical and Geoenvironmental Engineering*. 131(10), 1222–1233.
- Mobley, H. and Hausinger, R. (1989). Microbial ureases: significance, regulation, and molecular characterization. *Microbiological reviews*. 53(1), 85–108.
- Moh, Z.-C. and Mazhar, M. F. (1969). Effects of method of preparation on index properties of lateritic soils. In *Soil Mechanics & Foundation Engineering 7th International Conference, Mexico*, vol. 1. 23–35.
- Mohamedzein, Y. E.-A. and Aboud, M. H. (2006). Compressibility and shear strength of a residual soil. *Geotechnical & Geological Engineering*. 24(5), 1385–1401.
- Montoya, B. M. and DeJong, J. (2011). Strength and stiffness of MICP treated sand subjected to various stress paths. In *Geo-Frontiers 2011: Advances in Geotechnical Engineering*.
- Montoya, B. M. and DeJong, J. (2013). Healing of biologically induced cemented sands. *Geotechnique Letters*. 3(3), 147–151.

- Morales, L., Romero, E., Jommi, C., Gime, A. and Garzo, E. (2015). Feasibility of a soft biological improvement of natural soils used in compacted linear earth construction. *Acta Geotechnica*. 10, 157–171.
- Mortensen, B., Haber, M., DeJong, J., Caslake, L. and Nelson, D. (2011). Effects of environmental factors on microbial induced calcium carbonate precipitation. *Journal of applied microbiology*. 111(2), 338–349.
- Mueller, R. F. (1996). Bacterial transport and colonization in low nutrient environments. *Water Research*. 30(11), 2681–2690.
- Naeini, S. and Jahanfar, M. (2011). Effect of salt solution and plasticity index on undrained shear strength of clays. World Academy of Science, Engineering and Technology. 49, 982–986.
- Nelson, S. J. and Launt, P. (1991). Stripper well production increased with MEOR treatment. *Oil & gas journal*. 89(11).
- Nemati, M., Greene, E. and Voordouw, G. (2005). Permeability profile modification using bacterially formed calcium carbonate: comparison with enzymic option. *Process Biochemistry*. 40(2), 925–933.
- Ng, W., Lee, M. and Hii, S. (2012). An overview of the factors affecting microbialinduced calcite precipitation and its potential application in soil improvement. *World Academy of Science, Engineering and Technology*, 723–729.
- Nicell, J. A., Bewtra, J., Taylor, K., Biswas, N. and Pierre, C. S. (1992). Enzyme catalyzed polymerization and precipitation of aromatic compounds from wastewater. *Water Science and Technology*. 25(3), 157–164.
- Okwadha, G. D. and Li, J. (2010). Optimum conditions for microbial carbonate precipitation. *Chemosphere*. 81(9), 1143–1148.
- Paassen, L. V. (2011). Bio-mediated ground improvement: from laboratory experiment to pilot applications. *Geo-Frontiers 2011@ Advances in Geotechnical Engineering*, 4099–4108.
- Park, S.-S., Choi, S.-G. and Nam, I.-H. (2014). Effect of Plant-Induced Calcite Precipitation on the Strength of Sand. *Journal of Materials in Civil Engineering*. 26(8), 06014017.
- Percival, S. L., Malic, S., Cruz, H. and Williams, D. W. (2011). Introduction to biofilms. In *Biofilms and veterinary medicine*. (pp. 41–68). USA: Springer.
- Persons, B. S. (2012). *Laterite: genesis, location, use*. USA: Springer Science & Business Media.

- Petersen, G., Chesters, G. and Lee, G. (1966). Quantitative determination of calcite and dolomite in soils. *Journal of Soil Science*. 17(2), 328–338.
- Phillips, A. J., Gerlach, R., Lauchnor, E., Mitchell, A. C., Cunningham, A. B. and Spangler, L. (2013). Engineered applications of ureolytic biomineralization: a review. *Biofouling*. 29(6), 715–733.
- Public Works Department Malaysia (1996). *Geoguide 1-5, Tropical weathering in-situ material*.
- Punmia, B. and Jain, A. K. (2005). Soil mechanics and foundations. India: Firewall Media.
- Pupisky, H. and Shainberg, I. (1979). Salt effects on the hydraulic conductivity of a sandy soil. *Soil Science Society of America Journal*. 43(3), 429–433.
- Qabany, A. A., Soga, K. and Santamarina, C. (2011). Factors affecting efficiency of microbially induced calcite precipitation. *Journal of Geotechnical and Geoenvironmental Engineering*, (August), 992–1001.
- Ramachandran, S. K., Ramakrishnan, V. and Bang, S. S. (2001). Remediation of concrete using micro-organisms. *ACI Materials journal*. 98(1), 3–9.
- Rebata-Landa, V. (2007). *Microbial Activity in Sediments: Effects on Soil Behaviour*.Ph.D. Thesis. Georgia Institution of Technology.
- Reddy, S., Rao, M., Aparna, P. and Sasikala, C. (2010). Performance of standard grade bacterial (bacillus subtilis) concrete. *Asian J Civ Eng (Build Housing)*. 11, 43–55.
- Richardson, A., A. Coventry, K., M. Forster, A. and Jamison, C. (2014). Surface consolidation of natural stone materials using microbial induced calcite precipitation. *Structural Survey*. 32(3), 265–278.
- Rietz, D. and Haynes, R. (2003). Effects of irrigation-induced salinity and sodicity on soil microbial activity. *Soil Biology and Biochemistry*. 35(6), 845–854.
- Rivadeneyra, M., Delgado, G., Ramos-Cormenzana, A. and Delgado, R. (1998). Biomineralization of carbonates by Halomonas eurihalina in solid and liquid media with different salinities: crystal formation sequence. *Research in Microbiology*. 149(4), 277–287.
- Sadjadi, M., Nikooee, E. and Habibagahi, G. (2014). Biological treatment of swelling soils using microbial calcite precipitation. In Khalili, N., Russell, A. . R. and Khoshghalb, A. (Eds.) Unsaturated soils : research & applications. (pp. 917–922). Leiden, The Netherlands: CRC Press/Balkema, chap. 122.
- Saeed, K. A., Kassim, K. A., Nur, H. and Yunus, N. Z. M. (2014). Strength of limecement stabilized tropical lateritic clay contaminated by heavy metals. *KSCE Journal*

of Civil Engineering. 00(0000), 1-6.

- Samarakoon, K., Senevirathne, M., Lee, W.-W., Kim, Y.-T., Kim, J.-I., Oh, M.-C. and Jeon, Y.-J. (2012). Antibacterial effect of citrus press-cakes dried by high speed and far-infrared radiation drying methods. *Nutrition research and practice*. 6(3), 187–194.
- Sarda, D., Choonia, H. S., Sarode, D. and Lele, S. (2009). Biocalcification by Bacillus pasteurii urease: a novel application. *Journal of industrial microbiology & biotechnology*. 36(8), 1111–1115.
- Schaetzl, R. J. and Anderson, S. (2005). *Genesis and Geomorphology*. United Kingdom: Cambridge University Press, Cambridge.
- Schloss, P. D. and Handelsman, J. (2004). Status of the microbial census. *Microbiology* and Molecular Biology Reviews. 68(4), 686–691.
- Seagren, E. A. and Aydilek, A. H. (2010). Biomediated geomechanical processes. In Mitchell, R. and Gu, J.-D. (Eds.) *Environmental microbiology*. (pp. 319–348). Inc., Hoboken, NJ, USA: John Wiley & Sons. (2nd ed.).
- Shanahan, C. and Montoya, B. M. (2014). Strengthening Coastal Sand Dunes Using Microbial-Induced Calcite Precipitation. *Geo-Congress 2014 Technical Papers*, 1683– 1692.
- Sharma, A. and Ramkrishnan, R. (2016). Study on effect of Microbial Induced Calcite Precipitates on strength of fine grained soils. *Perspectives in Science*, Article in press.
- Soon, N., Lee, L., Khun, T. and Ling, H. (2014). Factors Affecting Improvement in Engineering Properties of Residual Soil through Microbial-Induced Calcite Precipitation. *Journal of Geotechnical and Geoenvironmental Engineering*. 04014006(11), 1–11.
- Sowers, G. (1985). Residual soils in the United States. *Sampling and testing of residual soils: a review of international practice. Edited by EW Brand and HB Phillipson. Scorpion Press, Hong Kong*, 324–339.
- Sparks, D. L. (2003). Environmental soil chemistry. London: Academic press.
- Stabnikov, V., Naeimi, M., Ivanov, V. and Chu, J. (2011). Formation of waterimpermeable crust on sand surface using biocement. *Cement and Concrete Research*. 41(11), 1143–1149.
- Stocks-Fischer, S., Galinat, J. K. and Bang, S. S. (1999). Microbiological precipitation of CaCO 3. Soil Biology and Biochemistry. 31(11), 1563–1571.
- Sunil, B., Nayak, S. and Shrihari, S. (2006). Effect of pH on the geotechnical properties of laterite. *Engineering geology*. 85(1), 197–203.

- Taha, M., Sarac, D., Chik, Z. and Nayan, K. (1997). Geotechnical and Geoenvironmental Aspects of Residual Soil. In *Proceeding of 4th regional Conference in Geotechnical Engineering*. November 1997. GEOTROPIKA 97, University Teknologi Malaysia, 331–341.
- Taha, M. R., Hossain, M., Chik, Z., Nayan, M., Anuar, K. et al. (1999). Geotechnical behaviour of a Malaysian residual granite soil. *Pertanika journal of science &* technology. 7(2), 151–169.
- Tan, B., Huat, B., Sew, G. and Ali, F. (2004). Country case study: engineering geology of tropical residual soils in Malaysia. In *Tropical residual soils engineering*. (pp. 237–244). London: AA Balkema/CRC press.
- Tate III, R. L. (2000). Soil microbiology. New York: John Wiley and Sons.
- Tennant, C. and Berger, R. (1957). X-ray determination of dolomite-calcite ratio of a carbonate rock. *Am. Mineral.* 42, 23–29.
- Thriveni, T., Um, N., Nam, S.-Y., Ahn, Y. J., Han, C. and Ahn, J. W. (2014). Factors affecting the crystal growth of scalenohedral calcite by a carbonation process. *Journal of the Korean Ceramic Society*. 51(2), 107–114.
- Tripathi, S., Kumari, S., Chakraborty, A., Gupta, A., Chakrabarti, K. and Bandyapadhyay, B. K. (2006). Microbial biomass and its activities in salt-affected coastal soils. *Biology and fertility of soils*. 42(3), 273–277.
- Tuncer, E. and Lohnes, R. (1977). An engineering classification for certain basaltderived lateritic soils. *Engineering Geology*. 11(4), 319–339.
- Vahabi, A., Ramezanianpour, A. A., Sharafi, H., Zahiri, H. S., Vali, H. and Noghabi, K. A. (2015). Calcium carbonate precipitation by strain Bacillus licheniformis AK01, newly isolated from loamy soil: a promising alternative for sealing cement-based materials. *Journal of basic microbiology*. 55(1), 105–111.
- van Paassen, L. A., Ghose, R., van der Linden, T. J., van der Star, W. R. and van Loosdrecht, M. C. (2010). Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment. *Journal of Geotechnical and Geoenvironmental Engineering*. 136(12), 1721–1728.
- Van Tittelboom, K., De Belie, N., De Muynck, W. and Verstraete, W. (2010). Use of bacteria to repair cracks in concrete. *Cement and Concrete Research*. 40(1), 157–166.
- van Veen, J. A., van Overbeek, L. S. and van Elsas, J. D. (1997). Fate and activity of microorganisms introduced into soil. *Microbiology and Molecular Biology Reviews*. 61(2), 121–135.
- Vaughan, P. (1988). Characterising the mechanical properties of in-situ residual soil. In

Proceedings of the 2nd international conference on Geomechanics in Tropical Soils, Singapore, vol. 1214. 469–487.

- Vempada, S., Reddy, S., Rao, M. and Sasikala, C. (2011). Strength Enhancement of Cement Mortar using Microorganisms-An Experimental Study. *J Earth Sci Eng.* 04(06), 933–936.
- Venda Oliveira, P. J., da Costa, M. S., Costa, J. a. N. P. and Nobre, M. F. (2015). Comparison of the Ability of Two Bacteria to Improve the Behavior of Sandy Soil. *Journal of Materials in Civil Engineering*. 27(1), 06014025.
- Venuleo, S., Laloui, L., Terzis, D., Hueckel, T. and Hassan, M. (2016). Microbially induced calcite precipitation effect on soil thermal conductivity. *Géotechnique Letters*. 6(1), 39–44.
- Wang, J., De Belie, N. and Verstraete, W. (2012). Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete. *Journal of industrial microbiology & biotechnology*. 39(4), 567–577.
- Warne, S. S. J. and Mitchell, B. (1979). Variable atmosphere DTA in identification and determination of anhydrous carbonate minerals in soils. *Journal of Soil Science*. 30(1), 111–116.
- Warren, L. A., Maurice, P. A., Parmar, N. and Ferris, F. G. (2001). Microbially mediated calcium carbonate precipitation: implications for interpreting calcite precipitation and for solid-phase capture of inorganic contaminants. *Geomicrobiology Journal*. 18(1), 93–115.
- Weil, M. H., DeJong, J. T., Martinez, B. C. and Mortensen, B. M. (2012). Seismic and resistivity measurements for real-time monitoring of microbially induced calcite precipitation in sand. ASTM geotechnical testing journal. 35(2), 330–341.
- Whiffin, V. S., van Paassen, L. a. and Harkes, M. P. (2007). Microbial Carbonate Precipitation as a Soil Improvement Technique. *Geomicrobiology Journal*.
- Whitlow, R. (1990). Basic soil mechanics. England: Longman Scientific & Technical.
- Wiktor, V. and Jonkers, H. M. (2011). Quantification of crack-healing in novel bacteriabased self-healing concrete. *Cement and Concrete Composites*. 33(7), 763–770.
- Wilson, D. and Chosewood, L. (2007). Biosafety in microbiological and biomedical laboratories. US Department of Health and Human Services, CDC/NIH, 5th Edition. US Government Printing Office, Washington, DC.
- Yasuhara, H., Hayashi, K. and Okamura, M. (2011). Evolution in mechanical and hydraulic properties of calcite-cemented sand mediated by biocatalyst. In *Geo-Frontiers 2011@ sAdvances in Geotechnical Engineering*. ASCE, 3984–3992.

- Yasuhara, H., Neupane, D., Hayashi, K. and Okamura, M. (2012). Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation. *Soils and Foundations*. 52(3), 539–549.
- Yuan, X. L., Peng, Y. Z., Liu, D. M. and Zhu, Q. S. (2015). Effect of MICP on the properties of the cement paste. In Architectural, Energy and Information Engineering: Proceedings of the 2015 International Conference on Architectural, Energy and Information Engineering (AEIE 2015), Xiamen, China, May 19-20, 2015. London: CRC Press, 259.
- Zhao, Q., Li, L., Li, C., Li, M., Amini, F. and Zhang, H. (2014). Factors Effecting Improvement of Engineering Properties of MICP-treated Soil Catalyzed by Bacteria and Urease. *Journal of Materials in Civil Engineering*. 26(12), 4014094.