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ABSTRACT

Biomediated soil improvement, also known as Microbial Induced Calcite
Precipitation (MICP), is a promising new branch of microbial geotechnology. Earlier
MICP studies only focused on sandy soils, but more recent studies have also investigated
the potential and feasibility of MICP on tropical residual soil. The main objective
of this study is to examine the feasibility of MICP and the mechanisms involved
between two types of bacteria and chemical reagents in improving the strength of
tropical residual soil. Essentially, this was about identifying the optimized treatment
conditions as well as the effects of some specific MICP parameters and curing on
unconfined compressive strength (UCS) development and calcite distribution. Two
bacteria from the Bacillus family, namely, Bacillus subtilis and Sporosarcina pasteurii,
were used as urease producing bacteria. The tropical residual silt soil with 80% fine
soil was compressed to a cylindrical sample measuring 100 mm in height and 50
mm in diameter as well as having a dry density of 1.31 Mg/m3. Continuous injection
method was employed. Series of tests were carried out, with each having different
chemical reagents concentrations (0.15, 0.25, 0.35 or 0.45 M), reagent flow pressures
(0.1, 0.2, 0.3 or 0.4 bars), and treatment durations (24, 48, 72 or 96 hours). Strength
improvement of about 56.70% and 38.14% was immediately discovered after MICP
treatment using Sporosarcina pasteurii and Bacillus subtilis, respectively. Additionally,
strength improvement of about 30 to 104.12% were recorded after curing the samples
for 3, 7, 14, 20, and 28 days. The optimum curing period was 14 days. The optimum
treatment condition of MICP treatment for both bacteria consisted of 0.25 M of reagent
concentration, 0.2 bars of reagent flow pressure, and 48 hours of treatment duration. The
reagent flow pressure was the only MICP parameter that affected calcite distribution.
No clear correlation was observed between calcite precipitation and strength. The
two bacteria had distinctive responses to the designated treatment conditions as the
behaviour of living microorganisms could differ although they are from the same family.
This information were analysed to establish design charts for MICP practitioner in
selecting optimal MICP parameters under different circumstances.
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ABSTRAK

Pembaikan tanah secara Biomediated yang juga diketahui sebagai pemendakan
kalsit cetusan mikrob (MICP) merupakan bidang Geoteknologi mikrob yang baru
dan berpotensi. Kajian-kajian awal MICP hanya tertumpu kepada tanah berpasir,
tetapi beberapa kajian baru MICP telah dijalankan untuk mengkaji potensi dan
kebolehlaksanaan MICP ke atas tanah baki tropika. Objektif utama kajian ini adalah
untuk mengkaji kebolehlaksanaan MICP dan mekanismanya antara dua jenis bakteria
serta reagen kimia untuk meningkatkan kekuatan tanah baki tropika, mengenalpasti
keadaan rawatan yang optima, kesan parameter MICP yang tertentu dan pengawetan
terhadap perkembangan kekuatan tak terkurung dan taburan kalsit. Dua jenis bakteria
dari keluarga Bacillus yang sama, Bacillus subtilis dan Sporosarcina pasteurii,
digunakan sebagai bakteria penghasil urease. Kelodak dari tanah baki tropika dengan
80% butiran halus telah dimampatkan kepada sampel berbentuk silinder dengan
ketinggian 100 mm, garispusat 50 mm serta berketumpatan kering 1.31 Mg/m3. Kaedah
suntikan berterusan digunakan untuk rawatan ini. Siri ujian MICP telah dilakukan
dengan mengubah kepekatan reagen kimia (0.15, 0.25, 0.35, dan 0.45 M), tekanan
aliran reagen (0.1, 0.2, 0.3, dan 0.4 bars), dan tempoh rawatan (24, 48, 72, dan 96
jam). Peningkatan kekuatan sebanyak 56.70 % dan 38.14 % telah diperhatikan sejurus
selepas rawatan MICP yang menggunakan Sporosarcina pasteurii dan Bacillus subtilis.
Disamping itu, peningkatan kekuatan sebanyak 30 hingga 104.12 % telah direkodkan
selepas proses pengawetan selama 3, 7, 14, 20, dan 28 hari. Masa pengawetan optimum
adalah 14 hari. Keadaan optimum MICP untuk kedua-dua bacteria adalah 0.25 M
kepekatan reagen, 0.2 bar tekanan aliran reagen, dan 48 jam tempoh rawatan. Tekanan
aliran reagen adalah satu-satunya parameter MICP yang memberikan kesan terhadap
taburan kalsit. Tiada hubungan yang jelas antara mendakan kalsit dan kekuatan. Kedua-
dua bakteria memberi tindak balas yang berbeza terhadap rawatan dalam kajian ini
kerana mikroorganisma hidup mempunyai kelakukan yang berlainan walaupun dari
keluarga yang sama. Maklumat ini telah dianalisa bagi menghasilkan carta rekabentuk
untuk pengguna MICP dalam membuat pemilihan parameter MICP yang optima bagi
keadaan yang berbeza.
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CHAPTER 1

INTRODUCTION

1.1 Background of Study

The rapid and unprecedented population growth rate of the modern world’s
population are fuelling the demand for faster infrastructure development to meet the
ever-growing societal needs. However, its expansion is often limited by geographical
boundaries, undesired soil condition, and also the unavailability of competent soil
upon which facilities can be constructed. Fortunately, there exists different type of soil
stabilization or soil improvement methods that are able to treat and improve the quality
and the engineering properties of soil to enable infrastructure construction.

In Malaysia, the major problem specific to tropical residual soil is the high
annual rainfall which infiltrates into slopes and causes erosion, landslide and slope
failure at hillside area and highway (Huat et al., 2012). The strength and compressibility
of tropical residual soil arise from the effect of cementation of secondary deposition, but
this is often disrupted by the brittleness of the deposit (Kamarudin, 2004). To overcome
this, a more effective and environmental friendly soil improvement such as bio mediated
soil stabilization has to be examined to understand its feasibility.

The current massive soil stabilization methods often come with some
environmental issues. For example, the production of cement used pervasively for
construction and to improve ground condition is believed to be one of the major
contributors to carbon release and global warming through the burning of fossil fuels
(DeJong et al., 2010). Furthermore, most of the grouting injection fluid used for chemical
soil stabilization is toxic and hazardous to the environment and public (Karol, 2003).
Therefore, a more sustainable and environmental friendly method is needed to replace
and improve the conventional soil improvement techniques. In this regard, the bio
mediated soil stabilization method is a promising soil improvement approach since it
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utilizes biological processes to alter the engineering properties of soil such as strength,
stiffness, and permeability.

Bio mediated soil stabilization, also known as Microbial Induced Calcite
Precipitation (MICP), is a new and innovative application in the geotechnical
engineering field that has attracted the attention and great interest of researchers
worldwide. Similar rigour can be seen in research works on microbial induced carbonate
precipitation with varying type of soil, injection depth and bacteria as well as methods
to improve and practically implemented at site being studied. In fact, the usage of
microbial induced precipitation is not new in many industries. It has been applied to treat
contaminated soils (Khachatoorian et al., 2003); stabilize metal (Etemadi et al., 2003);
recover reservoir oil (Nelson and Launt, 1991); improve the strength of concrete and
cement mortar (Ghosh et al., 2005); retrofit and fix cracks in concrete (Van Tittelboom
et al., 2010); and others as described in Chapter 2.

DeJong et al. (2010) were among the researchers who had successfully started
the application of microbial inducted precipitation in geotechnical engineering to alter
the permeability and shear strength of a sandy soil. In relation to MICP of tropical
residual soil, Soon et al. (2014) conducted a series of MICP treatments on a tropical
residual soil (sandy silt) using Bacillus megaterium. They discovered that the unconfined
compressive strength (UCS) improved by 69% and the permeability reduced by 90%
compared to the untreated soil.

Although numerous studies have been published, literature on biomediated
soil stabilization mostly remains at the research stage due to inconsistencies in results
reported. The limitations of this approach are most commonly associated with the soil
type, the bacteria compatibility, and the complexity of the reactions. To this date, these
limitations are still unanswered and remain one of the biggest challenges to researchers
(Ivanov and Chu, 2008).



3

1.2 Problem Description

Most studies on MICP technique are done on sandy soil rather than fine grained
soil. Although a few studies have been published on fine-grained soils and tropical
residual soil (Soon et al., 2014; Lee et al., 2013), the results are inconsistent and
remained at the laboratory stage due to uncertainties and complexity of tropical residual
soil, soil geochemistry, bacteria, and other environmental factors.

On the other hand, Sporosarcina pasteurii and Bacillus subtilis have been widely
used as a urea-hydrolysing bacterium in numerous MICP studies, but its application
and feasibility in MICP treatment of typical fine-grained soils has never been examined.

The sizes of soil particle and pore throat are the main attributes in determining
the feasibility of the MICP treatment. The migration of the chemical reagents and
bacteria into the soil might be hindered by the fine grained soil and subsequently
affect the calcite precipitation distribution along the sample length. For this reason,
the application of MICP technique for fine grained soil remains largely an unexplored
territory.

Not only that, the small clay pore size and its low permeation rate for nutrient
and oxygen tend to limit cell growth on the particles’ surface. This makes the usage of
injection method inevitable despite the inherent problem of uneven calcite distribution.
In order to reach a uniform calcite distribution, the MICP parameters such as chemical
reagents, treatment duration, and reagents flow pressure have to be optimised, controlled
and counterbalanced

The implication from the problems stated above on the bacteria and other
environmental factors shows that there is no one recipe or typical formulation applicable
to all soil types for MICP treatment. Different soil type requires different combination
of MICP parameters due to the variations in mineralogy, pH, and geochemistry of the
soil.
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1.3 Objectives

The aim of this research is to improve the engineering properties of tropical
residual soil through the utilization of the bacteria and chemical reagents. The main
objectives in this research are listed as below.

(a) To determine the feasibility and relationship of MICP treatment by using two
different bacteria strains, Sporosarcina pasteurii (ATCC® 11859TM), and Bacillus
subtilis (ATCC® 55422TM) to improve shear strength and examine change in
permeability of treated tropical residual soils.

(b) To optimize MICP treatment and examine subsequent changes in strength, calcite
distribution and microstructure of the treated tropical residual soil with reference
to different MICP parameters, i.e., treatment duration, reagent concentration, and
reagent flow pressure.

(c) To establish a design chart for MICP treatment of tropical residual soil and to
examine the effects of curing period on MICP treated soil.

1.4 Scope of Study

This bio-mediated soil stabilization research focused on small scale laboratory
physical modelling. Tropical reddish residual clayey soil retrieved from Universiti
Teknologi Malaysia (UTM) at Skudai, Johor and passing 2 mm sieve was used.
The length and diameter of MICP treated cylindrical sample were 100 and 50 mm,
respectively.

The MICP treatment system was designed based on continuous injection method
in which the chemical regents was injected uninterrupted throughout the treatment
duration. This treatment was conducted in an air-conditioned room with temperature
controlled at 25.5�C. Sporosarcina pasteurii (ATCC® 11859TM) and Bacillus subtilis
(ATCC® 55422TM) were the bacteria used. It was hypothesized that both Sporosarcina
pasteurii and Bacillus subtilis are feasible for MICP treatment of tropical residual soil.
The formation of calcite tend to increase the shear strength of the soil after treatment.
However, it decreases the permeability of the treated soil. Geotechnical engineering
properties of the bio-mediated treated soil such as permeability and shear strength were
examined extensively with every recorded changes further studied and compared with
those of the untreated soil samples.
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In order to understand the mechanism and relationship of each of the MICP
components, six different treatment conditions were set up, which were:

1. Treatment with chemical reagents only

2. Treatment with nutrient broth only

3. Treatment with inclusion of Sporosarcina pasteurii only

4. Treatment with inclusion of Bacillus subtilis only

5. MICP treatment using Sporosarcina pasteurii

6. MICP treatment using Bacillus subtilis

The three most important parameters in this MICP treatment were reagents
concentration (0.15, 0.25, 0.35 and 0.45 M), reagent flow concentration (0.1, 0.2, 0.3,
and 0.4 bars), and treatment duration (24, 48, 72 and 96 hours). Each parameter was
altered to reach optimization and examine their effects on the unconfined compressive
strength (UCS), microstructure, and calcite distribution of the treated soil sample.
Additionally, the curing period was set at seven, 14, 20, and 28 days to examine the
long term performance of Sporosarcina pasteurii on the MICP treated soil.

This study has also established the MICP design chart of tropical residual soil for
strength improvement using Sporosarcina pasteurii and Bacillus subtilis with reagent
concentration set at 0.15, 0.25, 0.35, and 0.45 M and treatment duration fixed at 24, 36,
and 48 hours only.

1.5 Structure of Thesis

This thesis consists of seven chapters: Introduction (Chapter 1); Literature
Review (Chapter 2); Methodology (Chapter 3); Variation of MICP treatment conditions
(Chapter 4); Effect of chemical reagents flow pressure, concentration, and treatment
duration for MICP of Sporosarcina pasteurii and Bacillus subtilis (Chapter 5); The
MICP treatment design charts and effect of curing on MICP treatment (Chapter 6); and
Conclusion and Recommendation (Chapter 7). Concluding remarks are provided at
the end of each chapter to highlight and summarise the findings and outcomes of each
chapter.
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Chapter 1 is the introductory chapter on bio-mediated soil stabilization. It also
highlights the research background and problems; objectives; scope; and limitation of
the present research in relation to bio-mediated soil improvement.

Review of literatures is presented in Chapter 2 with the main focus put on
the origin of tropical residual soils and bio-mediated soil stabilization. Reviews on
the bacteria, MICP processes, MICP treatment on different type of soil, engineering
application, and factors are also included and discussed.

Research methodology, experiment procedures, material preparation, bacteria
cultivation and maintenance process and equipment specification exercised in this study
are explained and presented in Chapter 3. Physical and geotechnical properties test were
performed in accordance to procedures outlined by the British Standard. However, for
those testing methods which are not included in any specific standard, general accepted
methods established by researchers have been used in the determination of parameters
such as calcite determination, CEC, X-ray Fluorescence (XRF) and X-ray Diffraction
(XRD) analyses.

The results and outcome of this study are divided and discussed separately in
3 different chapters, i.e., Chapter 4, Chapter 5, and Chapter 6. Chapter 4 presents the
physical and geotechnical properties of tropical residual soil. It also presents an in depth
discussion on each MICP component, i.e., bacteria, chemical reagents, nutrient broth,
and tropical residual soil. Results for both samples treated by two different bacteria,
Sporosarcina pasteurii and Bacillus subtilis were also studied and discussed. The main
subjects discussed in this chapter are UCS and permeability of the MICP treated soil.

Chapter 5 mainly focused on the optimization of MICP treatment using
Sporosarcina pasteurii and Bacillus subtilis. Additionally, the effect of MICP parameters
such as chemical reagents flow pressure, concentration, and treatment duration for both
MICP of Sporosarcina pasteurii and Bacillus subtilis were examined. The discussion
mainly focused on the calcite distribution pattern, effect of calcite precipitation on UCS,
effectiveness of calcite precipitation, and some comparisons with other MICP studies.

Chapter 6 compiles the results and outcome in this study for the MICP design
chart establishment. It should be noted that the MICP treatment design charts, which
are based on Sporosarcina pasteurii and Bacillus subtilis, only serve as a guideline,
information and reference for MICP treatment of tropical residual soil. Nevertheless,
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the charts are useful for determining the optimum treatment duration for a given reagent
concentration and vice versa. In addition, the effect of curing on the MICP treated soil
is also examined and discussed in Chapter 6.

Lastly, Chapter 7 concludes the findings and outcomes of this study.
Recommendations for future research are also given in this last chapter.

1.6 Significance of Study

This particular research is crucial for the evolution of geotechnical ground
improvement technique to provide a more environmental friendly alternative to
conventional methods. The proposed MICP technique has the potential to resolve
geotechnical problems including healing of crack surface of lime stabilized soil; sealing
of tension crack of a slope; and coating for road embankment to prevent water infiltration
and for slope protection (where the early strengthening of soil is not a concern). Besides,
the exceptional advantage of using MICP treatment with bacteria is also able to heal
degraded calcite bonding after deformation; a trait not common in conventional methods.

The research provides a more profound understanding and knowledge for bio-
mediated soil stabilization on tropical residual soil. This research has evaluated the
feasibility of Sporosarcina pasteurii and Bacillus subtilis in MICP treatment of tropical
residual fine-grained soil, which has not been reported and attempted before the time of
this writing. The application of these two bacteria in MICP treatment had been proven
favourable and effective in UCS and permeability improvement. The research also
provides more understanding on the some important MICP parameters that affect calcite
distribution.

Another contribution is in a more in-depth understanding on the effects of calcite
distribution on the strength development of MICP treated soils. This research has also
evaluated the effect of curing period on UCS. The outcome of this research have been
assembled to establish a design charts for the bio-mediated soil stabilization of tropical
residual soil.
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Al-Thawadi, S. M. (2011). Ureolytic bacteria and calcium carbonate formation as a
mechanism of strength enhancement of sand. J. Adv. Sci. Eng. Res. 1(1), 98–114.

Aminaton, M., Fauziah, K. and Khairul Nizar, M. (2002). Mineralogy and Microfabric
of Residual Soils at Eastern region of Peninsular Malaysia. In The 2nd World
Engineering Congress 2002. Kuching, Sarawak: Universiti Putra Malaysia, 282–287.

Arasan, S. (2010). Effect of chemicals on geotechnical properties of clay liners: a
review. Research Journal of Applied Sciences, Engineering and Technology. 2(8),
765–775.



237

Arshad, M. and Coen, G. (1992). Characterization of soil quality: physical and chemical
criteria. American Journal of Alternative Agriculture. 7(1-2), 25–31.

Arunachalam, K. D., Sathyanarayanan, K., Darshan, B. and Raja, R. B. (2010). Studies
on the characterisation of Biosealant properties of Bacillus sphaericus. International
Journal of Engineering Science and Technology. 2(3), 270–277.

Atlas, R. M. (2010). Handbook of microbiological media. London: CRC press.

Azadi, M. and Pouri, S. (2016). Estimation of Reconstructed Strength of Disturbed
Biologically Cemented Sand Under Unconfined Compression Tests. Arabian Journal
for Science and Engineering, 1–8.

Banerjee, S. and Joshi, S. (2014). Ultrastructural analysis of calcite crystal patterns
formed by biofilm bacteria associated with cave speleothems. Journal of Microscopy
and Ultrastructure. 2(4), 217–223.

Bang, S., Lippert, J., Yerra, U., Mulukutla, S. and Ramakrishnan, V. (2010). Microbial
calcite, a bio-based smart nanomaterial in concrete remediation. International Journal
of Smart and Nano Materials. 1(1), 28–39.

Barnes-Svarney, P. and Svarney, T. (2014). The Handy Biology Answer Book. United
States: Visible Ink Press.

Bartlett, R. W. (1998). Solution mining: Leaching and fluid recovery of materials. The
Netherlands: Psychology Press.

Baskar, S., Baskar, R., Lee, N. and Theophilus, P. (2009). Speleothems from Mawsmai
and Krem Phyllut caves, Meghalaya, India: some evidences on biogenic activities.
Environmental geology. 57(5), 1169–1186.

Bawa, K. (1957). Laterite soils and their engineering characteristics. Journal of Soil
Mechanics & Foundations Division. 83(SM4), 1428–1–1428–15.

Berry, L. G., for Diffraction Data, I. C. and on Powder Diffraction Standards, J. C.
(1974). Selected powder diffraction data for minerals. Data book. na.

Beveridge, T. J. (1989). Role of cellular design in bacterial metal accumulation and
mineralization. Annual Reviews in Microbiology. 43(1), 147–171.

Bienz, D. R. (1993). The why and how of home horticulture. London: Macmillan.

Bin, L., Ye, C., Lijun, Z. and Ruidong, Y. (2008). Effect of microbial weathering on
carbonate rocks. Earth Science Frontiers. 15(6), 90–99.

Blight, G. E. and Leong, E. C. (2012). Mechanics of residual soils. London: CRC Press.

Bohn, H. L., Myer, R. A. and O’Connor, G. A. (2002). Soil Chemistry. New York: John
Wiley & Sons.



238

Bot, A. and Benites, J. (2005). The importance of soil organic matter: key to drought-
resistant soil and sustained food production. Canada: Food & Agriculture Org.

Brady, N. and Weil, R. (2008). The nature and properties of soils. United States of
America: Pearson/Prentice Hall.

Brand, E. W. and Phillipson, H. B. (1985). Review of international practice for the
sampling and testing of residual soils. In :Phillipson, H. B. e. (Ed.) Sampling &
Testing of Residual Soils. (pp. 7–22). Hong Kong: Scorpion Press.

British Standards Institution (1990a). British Standard Methods of Test for Soils for
Civil Engineering Purposes, BS1377- Part 2: Classification Tests. BSI, London.

British Standards Institution (1990b). British Standard Methods of Test for Soils for
Civil Engineering Purposes, BS1377- Part 4: Compaction-related test. BSI, London.

British Standards Institution (1990c). British Standards Methods of test for soils for
civil engineering purposes. BS1377-Part 3: Chemical and Electro-Chemical Tests.
BSI, London.

British Standards Institution (1990d). British Standards Methods of test for soils for
civil engineering purposes. BS1377-Part 7: Shear strength tests (total stress). BSI,
London.

British Standards Institution (1999). Code of Practice for site Investigations,
incorporating Amendment 2 (2010).BS5930. BSI, London.

Canfora, L., Bacci, G., Pinzari, F., Papa, G. L., Dazzi, C. and Benedetti, A. (2014).
Salinity and bacterial diversity: to what extent does the concentration of salt affect
the bacterial community in a saline soil? PloS one. 9(9), e106662.

Castanier, S., Le Métayer-Levrel, G., Orial, G., Loubière, J.-F. and Perthuisot, J.-P.
(2000). Bacterial carbonatogenesis and applications to preservation and restoration
of historic property. In Of microbes and art. (pp. 203–218). USA: Springer.

Chakraborty, D., Agarwal, V., Bhatia, S. and Bellare, J. (1994). Steady-state transitions
and polymorph transformations in continuous precipitation of calcium carbonate.
Industrial & engineering chemistry research. 33(9), 2187–2197.

Che-Ani, A., Shaari, N., Sairi, A., Zain, M. and Tahir, M. (2009). Rainwater harvesting
as an alternative water supply in the future. European Journal of Scientific Research.
34(1), 132–140.

Cheng, L. and Cord-Ruwisch, R. (2012). In situ soil cementation with ureolytic bacteria
by surface percolation. Ecological Engineering. 42, 64–72.

Cheng, L. and Cord-Ruwisch, R. (2014). Upscaling effects of soil improvement by
microbially induced calcite precipitation by surface percolation. Geomicrobiology



239

Journal. 31(5), 396–406.

Cheng, L., Cord-Ruwisch, R. and Shahin, M. a. (2013). Cementation of sand soil by
microbially induced calcite precipitation at various degrees of saturation. Canadian
Geotechnical Journal. 50(October 2012), 81–90.

Cheng, L. and Shahin, M. (2015). Assessment of different treatment methods
by microbial-induced calcite precipitation for clayey soil improvement. In 68th
Canadian Geotechnical Conference. 20 September 2015. GeoQuebec 2015, Quebec,
Canada: Canadian Geotechnical Society.

Chesworth, W. (2008). Encyclopedia of soil science. Netherlands: Springer.

Chu, J., Ivanov, V., Naeimi, M., Li, B. and Stabnikov, V. (2011). Development of
microbial geotechnology in Singapore. Proceedings of Geofrontiers 2011: Advances
in Geotechnical Engineering, 4070–4078.

Chu, J., Ivanov, V., Naeimi, M., Stabnikov, V. and Liu, H.-L. L. (2013a). Optimization
of calcium-based bioclogging and biocementation of sand. Acta Geotechnica. 9(2),
277–285.

Chu, J., Ivanov, V., Stabnikov, V. and Li, B. (2013b). Microbial method for construction
of an aquaculture pond in sand. Géotechnique. 63(10), 871–875.
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