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ABSTRACT

Magnetorheological (MR) fluids are field-responsive material with the ability 

to change its rheological behavior by having an external magnetic field. Therefore, 

they are commonly used in vibration damping, clutches, actuators and haptic devices. 

Generally, MR devices are fabricated utilizing the operational mechanism of a single 

working mode which is either flow, shear or squeeze. However, for this study a special 

MR damper was designed and fabricated to carry out a dynamic loading test and 

analyze the effect on a hydrocarbon-based MR fluid in a combination of shear and 

squeeze working modes. The damping force generated by shear mode is measured 

based on the force-displacements relationship of applied current and piston stroke 

length. The cushion effect generated by the squeeze mode is evaluated by the 

magnitude of the damping force at various piston stroke lengths. The MR damper 

could produce a damping force ranging from 50 to 270 N with zero input of current, 

up to 0.8 A without any saturation occurring from 15 to 25 mm of the piston stroke 

length. However, when the piston was closing to the bottom of the cylinder from 25 to 

26 mm, a high peak force was observed confirming the existence of the squeeze mode. 

The cushion effect started as soon as the current was applied showing a high magnitude 

of 722 N at only 0.2 A. As the applied current increased further to 0.8 A, a very high 

squeeze force up to 1030N was produced when the piston nearly reached the 

cylindrical end. This proves that the cushion effect induced by the squeeze mode helps 

strengthen the damping force and consequently brings a positive impact towards a 

mixed mode damper when the piston is nearly closing the gap at the bottom of the 

cylinder. In conclusion, a high yield stress MR damper at a small gap clearance was 

successfully produced and this uniqueness can be utilized as a replacement of the 

conventional rubber stopper in dampers.



ABSTRAK

Cecair Reologi Magnet (MR) adalah bahan responsif dengan keupayaan untuk 

mengubah tingkah laku reologi melalui medan magnet luar. Oleh itu, cecair ini biasa 

digunakan dalam redaman getaran, cengkaman, penggerak dan peranti haptik. Secara 

umumnya, peranti MR direka menggunakan mekanisme operasi mod kerja tunggal 

sama ada aliran, ricih atau himpitan. Walau bagaimanapun, untuk kajian ini, sejenis 

peredam MR khas telah direka dan dibina untuk menjalankan ujian pembebanan 

dinamik dan menganalisis kesan pada cecair MR yang berasaskan hidorkarbon dalam 

gabungan mod kerja ricih dan himpitan. Daya redaman yang dijana oleh mod ricih 

diukur berdasarkan hubungan daya-anjakan yang dikenakan oleh arus dan panjang 

strok omboh. Kesan kusyen yang dihasilkan oleh mod himpitan pula dinilai dengan 

magnitud daya redaman pada kepelbagaian panjang strok omboh. Peredam MR boleh 

menghasilkan daya redaman antara 50 hingga 270 N dengan input arus sifar sehingga 

0.8 A tanpa berlakunya ketepuan pada 15 hingga 25 mm panjang strok omboh. Walau 

bagaimanapun apabila omboh menghampiri ke bahagian bawah silinder pada jarak 25 

hingga 26 mm, puncak daya yang tinggi diperolehi dan mengesahkan kewujudan mod 

himpitan. Kesan kusyen didapati bermula sebaik sahaja arus diinputkan dengan 

menunjukkan magnitude tinggi iaitu 722 N pada arus input kecil 0.2 A. Ketika arus 

ditingkatkan kepada 0.8 A, daya himpitan yang sangat tinggi sehingga 1030 N terhasil 

apabila omboh menghampiri bahagian akhir silinder. Ini membuktikan bahawa kesan 

kusyen yang disebabkan oleh mod himpitan membantu menguatkan daya redaman dan 

seterusnya membawa kesan yang positif terhadap peredam mod campuran apabila 

omboh menghampiri jurang di bahagian bawah silinder. Pada kesimpulannya, tegasan 

alah tinggi peredam MR pada pelepasan jurang yang kecil telah berjaya dihasilkan dan 

keunikan ini boleh digunakan untuk mengganti penutup getah konvensional dalam 

peredam.
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INTRODUCTION

1.1 Introduction

Magnetorheological (MR) fluids are smart materials whose rheological 

properties are sensitive to magnetic field [1-4]. They are comprised of carrier liquid, 

iron particles and surfactant additives that are used to discourage particle 

sedimentation. Several different carrier fluids are utilized in MR fluids such as 

hydrocarbon-based oil, silicon oil, and water [1]. The viscosity of MR fluids changes 

significantly 105-106 times within milliseconds when the magnetic field is applied [5]. 

Additionally, their properties have been investigated since the late 1940s [6] and lately 

have gained attention because they can produce the highest stress, which is useful in 

many applications [7-9].

MR fluids can operate in three different working modes depending on the type 

of deformation employed such as the flow mode, the shear mode, and the squeeze 

mode [10-12]. In the flow mode, the MR fluid is made to flow between static plates, 

while in the shear mode, the MR fluid is located between two plates and sheared 

parallel to the plate that slides or rotates relative to the other plate. Meanwhile, in 

squeeze mode, the MR fluid is squeezed by a force in the same direction of the 

magnetic field under compression or tension loadings. In practice, the MR devices can 

use a combination of these three modes to overcome the performance limitation of a 

single working mode [12,13].



1.2 M otivation of Study

MR fluid is a smart material that responds to an applied magnetic field with a 

change in its rheological behavior. The essential characteristic of MR fluid is the 

ability to reversibly change from free-flowing, linear and viscous liquid to a semi-solid 

with a controllable yield strength instantaneously when exposed to the magnetic field. 

Recently, devices using MR fluid have been actively studied as controllable 

engineering components because of their continuously adjustable mechanical 

properties and rapid response. MR devices can be operated in different ways 

depending on the requirements of the application. The three common operational 

modes that have been applied in MR devices are the flow, the shear, and the squeeze 

modes. In practice, MR devices may utilize a combination of available modes to 

overcome performance limitation of a single working mode [12,13]. Most previous 

studies involving mixed working modes have focused on the combination of flow and 

shear modes. However, in recent years, researchers have begun to explore the 

combination of two other modes which involved shear and squeeze modes [14,15].

The effectiveness of the combination of shear and squeeze modes in the MR 

device was investigated by Kulkarni et al. [16]. Their results showed that although the 

squeeze mode could produce the highest strength compared to all the working modes, 

the introduction of squeeze mode to shear mode does not always increase the yield 

stress of MR fluid. In another experimental study done by See and Tanner [17], the 

performance of the combination of shear and squeeze modes for the MR fluid was also 

investigated. They observed a normal force was arising from the MR fluid that 

sandwiched between two plates where the magnetic field applied normally to the plate 

surfaces. When the MR fluid was not subjected to any deformation, it was found that 

the normal force was increased with the increasing magnetic flux density. However, 

when the MR fluid was subjected to continuous shearing, the normal force of the fluid 

has decreased with shear strain, eventually reaching a plateau value which became 

lower with higher shear rates. This behavior was referred to the breakage of the chain

like structure of particles due to the shear forces. According to Tang et al. [18], the 

yield stress of MR fluid strongly depended on the arrangement of magnetic particles 

structure in a magnetic field. The MR fluid with the thick column structure will have



a higher yield stress compared than the MR fluid with the single-chain structure. The 

phenomenon resulted from the formation of thicker and stronger columns of particles 

that were able to increase the yield stress of MR fluid up to 800 kPa. A further study 

about the physical mechanism and microstructure of MR fluid was investigated by Tao 

[3]. They have found that the weak points of the MR microstructure under the shear 

force occurred at the end of the chains. Thus, a compression-aggregation process was 

developed to change the induced MR structure to the structure that consists of robust 

thick columns with strong ends. Zhang et al. [19] studied the mechanism of the 

squeeze-strengthen effect in MR fluids. They proposed an apparatus to analyze the 

effect of mechanical compression on MR fluid in shear mode condition. Their results 

revealed that a very high compression stress could enhance the yield stress of MR fluid 

for a given magnetic field, which showing the squeeze strengthen effect. When the 

MR fluid was compressed, the distances between the iron particles in the MR fluid 

were decreased, whereby the magnetic forces between the particles were increased. In 

another study, Spaggiari and Dragoni [20] had confirmed that by having the squeeze- 

strengthen effect, it could increase the yield stress of MR fluid due to the influence of 

magnetic field and the applied pressure. Moreover, Becnel et al. [21] suggested the 

method to increase the yield stress of MR fluids by combining the shear and squeeze 

modes to manipulate the particle chain structures due to the squeeze strengthening. A 

further study about the detailed investigation of the relationship between the 

compression force and the shear stress enhancement of the MR fluid in rotational 

actuator was presented in Hegger and Maas [22]. They developed a conical MR fluid 

test actuator with a conical shear gap to compress the MR fluid. From their results, 

they concluded that the shear stress of MR fluid could be increased by the squeeze 

strengthening effect at least two times than the normal shear stress of MR fluid.

The excellent results on the squeeze strengthening effect of MR fluid have a 

potential to be used in the MR devices, particularly in the MR damper. This effect will 

be very useful for the MR damper whether to enhance the performance or to give an 

additional feature in the MR damper. There are many research works on the 

development of MR damper especially in terms of providing the damper to be used in 

real applications. In several studies, the success of MR damper is proven by the 

improvements and modifications that had been made to the features on the MR damper. 

For example, Bai et al. [23] proposed an MR damper with an inner bypass to produce



high dynamic range and low off-state stroking load for the ground vehicle suspensions. 

Meanwhile, Sohn et al. [24] presented an MR damper featuring piston bypass holes to 

achieve a low slope of the damping force at low piston velocity and high magnitude of 

the damping force at high piston velocity. In several studies, some researchers have 

investigated the effects of temperature on the performance of MR damper [5,25,26]. 

Besides that, Wang and Wang [27] suggested an integrated relative displacement 

sensor technology into MR damper for the semi-active vehicle suspension systems that 

can reduce the cost and improve the system reliability. Hu et al. [28] proposed an MR 

damper which has a self-sensing ability by developing a linear variable differential 

sensor based on the electromagnetic induction mechanism. Although many types of 

researches have been studied on the features of MR dampers, however, to the best of 

author’s knowledge, the cushion effect in the design of MR damper has been not 

discovered. Normally, the cushion effect in a damper is produced by a rubber stopper. 

The cushion effect is necessary as a damper protection from unwanted impact in order 

to reduce a risk of damage on the damper operated under severe environmental 

vibrating conditions. However, the installation of rubber stopper is not suitable due to 

an incompatibility of the rubber with the hydrocarbon oil that is contained in the MR 

fluid [1]. Furthermore, in this case study, based on the design of the damper, the rubber 

stopper will limit the stroke length of the piston and the overall size of MR damper.

1.3 Research Objectives

MR fluids exhibit excellent properties as a result of rapid changes, dramatic 

and reversible consistency in a magnetic field. The priority for any type of MR fluid 

or working modes depending on the application requirements. Thus, the investigation 

on the behavior of MR fluid under dynamic loading condition has attracted some 

attention of academic researchers and engineers. The potentials of MR fluid can only 

be fully exploited if the properties and the design of the device are accommodated to 

each other. The main objective of this study is to analyze the behavior of MR fluid by 

having a combination of shear and squeeze working modes. More specifically, the 

aims of this study can be summarized as follows:



1. To simulate the magnetic field generated by the coils to improve magnetic field

strength at the effective areas.

2. To develop a test rig in order to carry out the dynamic loading test under a

combination of shear and squeeze working modes.

3. To analyze the squeeze strengthening effect of MR fluid in the test rig by

having a combination of shear and squeeze working modes.

4. To evaluate the influence of applied currents and piston stroke lengths on the

behavior of MR fluid in test rig by having a combination of shear and squeeze 

working modes.

1.4 Research Scope

Consequently, the technical originality of this study is to introduce a mixed 

mode MR damper in which the cushion effect can be produced to reduce the unwanted 

impact. In order to achieve this goal, a custom test rig in the forms of MR damper with 

a combination of shear and squeeze working modes was developed to analyze the 

behavior of squeeze strengthening effect of MR fluid. The shear mode that is generated 

by the movement of the piston is used to provide the damping force. Meanwhile, the 

squeeze mode generated when the piston nearly reaches to the bottom of the cylinder 

is used to obtain the cushioning effect. The magnetic field strength generated by the 

coils in the MR damper is simulated using Finite Element Method Magnetics (FEMM) 

software package. All aspects of geometry parameters involving the selection of 

materials, the position of coils, the type of coils, the number of turns of coils and the 

polarity of coils are considered and adjusted efficiently within FEMM in order to 

increase the magnetic field strength at the effective areas. In addition, the magnetic 

circuit design in the MR damper is analyzed based on the several parameters including 

the effect of applied currents, the gap sizes and the position of the piston in the cylinder. 

Then, the MR damper is fabricated based on the magnetic field simulation studies. An 

experimental assessment is conducted by measuring the damping force under dynamic



loading testing with two different parameters namely the applied current and the piston 

stroke length. However, the parameter involving the velocity of the piston movement 

will not be included. The damping force produced by the MR damper is measured 

based on the relationship between force and displacements. After characterizing the 

effect of applied current on the behavior of damping force of the proposed MR damper, 

the cushioning effect is investigated by changing the piston stroke lengths. This effect 

is evaluated by the magnitude of damping force at a certain piston location with the 

applied current.

1.5 Outline of Thesis

This thesis is organized in five chapters. A concise and inclusive review of the 

highlighted research process is shown in Figure 1.1. Each respective chapter in this 

thesis ends with a brief summary outlining the achievements and findings that were 

established in the chapter. Apart from this introduction chapter, the remainder of this 

thesis is organized as shown:

Chapter 2: This chapter thoroughly reflects the theoretical background and

previous works related to the MR fluid including properties of 

MR fluid, working modes and applications.

Chapter 3: This chapter covers the simulation and experimental procedures 

related to the design of test rig in order to increase the magnetic 

field strength that generated by the coils at the effective areas.

Chapter 4: This chapter provides the results and discussions of the 

simulation studies of magnetic field and behavior of MR fluid 

in the MR damper.

Chapter 5: This chapter presents the conclusions and highlights of the 

research contribution with recommendations for future research 

work.



Figure 1.1 Summary of the research process in Chapter 1



of the cylinder. The answer to this issue will be beneficial to understand the 

basic knowledge of the squeeze behavior and also as an advantage to design 

the device by using a squeeze mode to be worked under severe dynamic 

loadings.

c) It would be interesting to model the behavior of MR damper by having the 

presence of a cushioning effect. It is remarked here that the cushioning indeed 

provides additional complexity that is represented by another degree of non

linearity caused by the sudden increase of the damping force. This complexity 

is not favorable in control of the damping force of MR damper, especially it is 

integrated with the inherent hysteresis behavior of the damper. Therefore, it 

will become a challenge to the controller design to equip suitable controller for 

the MR damper if the cushioning force is considered in the operation.
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