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ABSTRACT 

Hyperspectral unmixing is a process to identify the constituent materials and estimate 

the corresponding fractions from the mixture, nonnegative matrix factions ( NMF ) is 

suitable as a candidate for the linear spectral mixture mode, has been applied to the 

unmixing hyperspectral data. Unfortunately, the local minima is cause by the 

nonconvexity of the objective function  makes the solution nonunique, thus only the 

nonnegativity constraint is not sufficient enough to lead to a well define problems. 

Therefore, two inherent characteristic of hyperspectal data, piecewise smoothness ( 

both temporal and spatial ) of spectral data and sparseness of abundance fraction of 

every material, are introduce to the NMF. The adaptive potential function from 

discontinuity adaptive Markov random field model is used to describe the 

smoothness constraint while preserving discontinuities is spectral data.  At the same 

time two NMF algorithms, non smooth NMS and NMF with sparseness constraint, 

are used to quantify the degree of sparseness of material abundances. Experiment 

using the synthetic and real data demonstrate the proposed algorithms provides an 

effective unsupervised technique for hyperspectial unmixing. 
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ABSTRAK 

 

Hyperspectral unmixing  merupakan proses untuk mengidentifikasi konstituen 

sebuah  bahan  dan memperkirakan fraksi dari sebuah mixture (campuran), 

nonnegative matrik factorization  (NMF) merupakan pasangan yang tepat untuk 

linear spectral pada bagian mixture, dimana telah di usulkan sebagai unmixing 

hyperspectral data. Sayangnya  local minima terjadi karena penyebab adanya 

nonnegativity constraint yang tidak mencukupi untuk menyelesaikan masalah. Oleh 

karena itu, dua karakteristik yang melekat pada  data hyperspectal, lapisan dan 

kelancaran (baik temporal dan spasial) data spektral dan kekurangan fraksi 

kelimpahan setiap materi, yang memperkenalkan kepada  NMF. Fungsi potensi 

adaptif dari  discontinuity adaptive Markov random field model digunakan untuk 

menggambarkan kendala kelancaran sambil menjaga diskontinuitas data spektral. 

Pada saat yang samakedua algoritma tersebut baik NMF dan NNMF dan NMF dgan 

sparseness constraint, digunakan untuk mengukur tingkat kekurangan material 

abundances. dua algoritma NMF, non halus NMS dan NMF dengan kendala 

kekurangan, digunakan untuk dari kelimpahan materi. Percobaan menggunakan 

simulasi  dan data real menunjukkan algoritma yang diusulkan memberikan teknik 

yang efektif untuk unmixing hyperspectial. 
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CHAPTER 1  

INTRODUCTION 

1.1 Introduction  

Nonnegative Matrix Factorization (NMF) (Lee and Seung, 1999; Pattero and 

Tapper, 1994) has attracted many attentions for the past decade as a dimension 

reduction method in machine learning and data mining. NMF are considered as one 

of the highest dimensional data where each element has a nonnegative value, and 

provide a lower rank approximation that formed by factors whose elements are also 

nonnegative.  

Due to the nonnegativity, the factors of lower rank approximation given a 

natural interpretation: for each object is explained by an additive linear it combines 

of intrinsic „parts‟ of the data (Lee and Seung, 1999). Numerous successes were 

reported in application areas including text mining (Pauca et all, 2004), text 

clustering (xu et all, 2003), computer vision (Li et all, 2001), and cancer class 

discovery (Brunett et all, 2004; Kim and Park, 2007). 

NMF can be traced back to 1970's (Notes from G. Golub) and it studies 

extensively by Paatero (Pattero and Tapper, 1994). Suggested that NMF factors 

contain coherent parts of the original images. They confirm that the difference 

between NMF and vector quantization (which is essentially the K-means clustering).  
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However, later experiments (Hoyer,2004; Pattero and Tapper, 1994) do not 

support the coherent part interpretation of NMF. Moreover, most applications make 

use of the clustering aspect of NMF, which is de-emphasized by Lee and Seung (Lee 

and Seung, 1999). A recent theoretical analysis (Ding et all, 2005) shows the 

equivalence between NMF and K-means / spectral clustering. 

In these days, automatic organization of documents becomes crucial since the 

number of documents to be handled increases rapidly. Document clustering is an 

important task in organizing documents automatically, which simplifies many 

subsequent tasks such as retrieval, summarization, and recommendation.  

Document is represented as an unordered collection of words, which leads to 

a term-document matrix for a set of documents to be processed. Term-document of 

matrix is nothing but co-occurrence table which is a simple case of dyadic data. 

Dyadic data refers to a domain with two finite sets of objects in which observations 

are made for dyads, i.e., pairs with one element from either set (Hofmann, Puzicha, 

& Jordan, 1999). 

Matrix factorization-based methods have established as a powerful 

techniques in dyadic data analysis where a fundamental problem, for example, is to 

perform document clustering or co-clustering words and documents given a term 

document matrix. Nonnegative matrix factorization (NMF) (Lee & Seung, 1999, 

2001) was successfully applied to a task of document clustering (Shahnaz et all, 

2006; Xu, Liu, & Gong, 2003), where a term-document matrix is taint into a product 

of two factor matrices, one of them is corresponds to a cluster canters (prototypes) 

and the other one which is associated with cluster indicator vectors. Orthogonal 

NMF, where an orthogonally constraint is imposed on a factor matrix in the 

decomposition, was shown to provide more clear interpretation on a link between 

clustering and matrix decomposition (Ding, Li, Peng, & Park, 2006). 



3 

New Extended algorithms for Non-negative Matrix Factorization (NMF). The 

proposed of the  algorithms are to characterized by improving the efficiency and 

convergence rate, it can also be applied for various distributions of data and additive 

noise. Information theory and information geometry play an important roles in the 

derivation of new algorithms. Several loss or functions are used in information 

theory which allow us to obtain generalized forms of multiplicative NMF learning 

adaptive algorithms. Flexible and relaxed are also  forms of the NMF algorithms to 

raise convergence speed and impose an additional constraint of sparsity.  

The scope of these results is vast since discussed generalized divergence 

functions include a large number of useful loss functions such as the Amari α– 

divergence, Relative entropy, Bose-Einstein divergence, Jensen-Shannon divergence, 

J-divergence, Arithmetic-Geometric (AG) Taneja divergence, etc. Applied the 

developed algorithms successfully to Blind (or semi blind) Source Separation (BSS) 

where sources may be generally statistically dependent, however are subject to 

additional constraints such as nonnegativity and sparsity. Moreover, we applied a 

novel multilayer NMF strategy which improves performance of the most proposed 

algorithms (Cichocki et all, 2006). 

1.2 Problem background 

Many problems in signal and image processing can be expressed in terms of 

matrix factorizations. Different cost functions and imposed constraints may lead to 

different types of matrix factorization. The Nonnegativity constraints and other 

constraints such as sparseness and smoothness. Non-negative matrix factorization 

(NMF) decomposes the data matrix, having only non-negative elements.  

The NMF (Non-negative Matrix Factorization) sometimes called also PMF 

(Positive Matrix Factorization) does not assume explicitly or implicitly sparseness or 
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mutual statistical independence of components, however usually provides sparse 

decomposition (Lee and Seung, 1999).  

The most existing NMF algorithms perform blind source separation rather 

very poorly due to non-uniqueness of solution and/or lack of additional constraints 

which should be satisfied. The main objective of this contribution is to propose a 

flexible NMF approach and generalize or combine several different criteria in order 

to extract physically meaningful sources from their linear mixtures and noise. 

Whereas most applications of NMF focused on grouping elements of images into 

parts (using the matrix A), the dual viewpoint by focusing primarily on grouping 

samples into components representing by the matrix X of source signals. 

1.3 Problem statement 

Nonnegative matrix factorization (NMF) is a technique to cluster and mixing 

image, but there are issues occurred to NMF for Blind source separation (BSS). 

Based on observation on techniques and methods of NMF, there is an opportunity for 

improvement in the technique. Therefore, the main research question that intended in 

this research is: 

“How to enhance existing techniques in Nonnegative Matrix Factorization for 

Blind Image separation?” And with the sub research questions of: 

1. How to compare the existing with the extended Nonnegative matrix 

factorization? 

2. How to reduce the noise from clustered image?  

3. How to use image as a source for Blind Image separation? 
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Enhancement of this technique will open a greater chance for a fully 

integrated Nonnegative Matrix Factorization. 

1.4 Objective 

1. To Study the use of Nonnegative Matrix Factorization NMF for blind 

image separation (BIS). 

2. To recover reduce noise from clustering image. 

3. To compare extended Nonnegative matrix factorization with Nonnegative 

matrix factorization. 

1.5 Scope 

1. The technique of blind image separation will be enhanced to increase 

tolerance of real data image recovery to signal form. 

2. The enhanced algorithms will be implemented and simulated with 

Nonnegative Matrix Factorization for Blind image separation. 

3. The mixture set of image will use a certain number of mixtures (4, 6, 8, 

10, 12). 

4. The data set sample is a greyscale image of with pixel size 300 X 400.
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