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ABSTRACT 

 

 

 

 

This study concerns the development of various Meshfree formulations, 

namely Point Interpolation Method (PIM), Radial Point Interpolation Method 

(RPIM) and Element Free Galerkin (EFG) in solving numerically, St Venant’s 

kinematic wave equations for the hydrologic modeling of surface runoff and channel 

flow. It involves problem formulations derivation of governing equations, provision 

of the corresponding solutions by generating Matlab source codes, verification of 

results against established data, parametric study and assessment of performance of 

the newly derived Meshfree formulations against established numerical methods, 

namely Finite Element Method (FEM) and Finite Difference Method (FDM). The 

originality and the main contribution of the study are solving the Meshfree 

formulations of the kinematic wave equations numerically. The formulations are 

verified when it is found that the results produced by the source codes are in general 

in close agreement with the benchmark data. Although slight discrepancies have 

been observed in some cases, these are later validated as due to several factors, 

namely shape parameters values which are yet to be optimized, different number of 

nodes used for comparison and manual discretization of input data. In obtaining the 

best performance of the methods, optimum values of the shape parameters have been 

determined through a parametric study which once obtained are used in the 

performance assessment. RPIM and PIM are found to be less sensitive to the 

optimum values as compared to EFG. Two types of performance are assessed; the 

convergence rate and the computer resource consumption in terms of CPU time. 

Based on this study, it can be concluded that, in general, Meshfree methods perform 

comparably with the established methods in terms of convergence rate despite the 

fact it does not need the construction of mesh which can save modelling time. This 

shows the potential of Meshfree as numerical methods for its future development.  
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ABSTRAK 

 

 

 

 

Kajian ini adalah berkenaan penerbitan formulasi beberapa kaedah Meshfree 

iaitu Point Interpolation Method (PIM), Radial Point Interpolation Method (RPIM) 

dan Element Free Galerkin (EFG) dalam menyelesaikan secara numerikal 

persamaan ombak kinematik St Venant untuk model hidrologi air larian permukaan 

dan aliran alur. Kajian ini melibatkan penerbitan formulasi, penyediaan penyelesaian 

dan penulisan kod komputer menggunakan Matlab, pengesahan keputusan melalui 

perbandingan dengan data sediada, kajian parameter dan penilaian kemampuan 

kaedah-kaedah yang baharu dihasilkan melalui perbandingan dengan kaedah-kaedah 

numerikal sediada seperti kaedah unsur terhingga dan kaedah pembeza. Keaslian dan 

sumbangan utama kajian ini adalah formulasi beberapa kaedah Meshfree yang 

dihasilkan dengan menukar persamaan ombak kinematik ke dalam bentuk matrik. 

Formulasi-formulasi yang diterbitkan telah disahkan apabila keputusan-keputusan 

yang terhasil didapati menyamai data sediada. Walaupun terdapat perbezaan kecil 

untuk beberapa kes, ia telah dijelaskan sebagai kesan dari beberapa faktor seperti 

nilai parameter bentuk yang belum optimum, perbezaan bilangan nod sewaktu 

perbandingan dibuat dan penentuan input data sediada yang dibuat secara manual. 

Kemampuan terbaik kaedah-keadah yang baharu dihasilkan ini diperoleh dengan 

penentuan nilai optimum parameter bentuk melalui kajian parameter yang telah 

dijalankan. PIM dan RPIM didapati kurang dipengaruhi oleh nilai optimum 

berbanding EFG. Melalui penggunaan nilai-nilai optimum ini, kajian kemampuan 

telah dijalankan dimana ia melibatkan dua bentuk kajian iaitu kadar penumpuan dan 

kadar penggunaan sumber komputer. Berdasarkan kajian ini boleh disimpulkan 

bahawa secara umumnya kaedah-kaedah Meshfree mempunyai kemampuan yang 

sama dengan kaedah-kaedah numerikal sediada walaupun ia tidak memerlukan 

penyediaan mesh lantas mengurangkan masa untuk kerja permodelan dan ini 

menunjukkan potensi untuk penggunaan akan datang. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Kinematic Wave Equations 

 

 

Hydrologic modeling concerns the study of hydrologic processes such as 

evapotranspiration, subsurface flow, surface runoff and channel flow.  Methods of 

study can be either stochastic or deterministic or combination of the two.  Whilst 

stochastic method employs probabilistic (statistical) approach, deterministic method 

basically involves attempt to solve a set of partial differential equation which 

describes the behavior of the flow.  This study concerns the latter.   

 

 

The deterministic approach, on the other hand can be further divided into two 

groups, lumped and distributed.  The main advantage of distributed modeling over 

lumped is that, it is easier to allow for variation in the properties of parameters such 

as variation in cross-sectional area, intensity of precipitation, soils coefficients, 

slopes and many others.   

 

 

However, such an advantage requires the solution of a set of one-dimensional 

nonlinear partial differential equations known as St. Venant equations.  These 



2 
 

equations are actually the simplification of the two-dimensional shallow water theory 

derived from the general Navier-Stokes equations.   

 

 

St. Venant equations themselves can be further classified into full dynamics, 

diffusive and kinematic wave equations.  Full dynamics equations allow for complete 

consideration of the flow, whilst diffusive equations able to capture backwater effect.  

If the slope of the plane is assumed as equaled to the frictional slope, such an 

assumption would uncouple the continuity equation from the momentum equation 

hence the prevalence of the kinematic wave equations.   

 

 

Despite being the simplest case of St Venant equations, there is no closed 

form solution available for the kinematic wave except for the simplest case of no 

lateral flow and constant wave celerity.  The difficulty is due to the nonlinearity as 

well as the unsteady state of the equation.  As a result, kinematic wave equations are 

commonly solved numerically with the help of computer programming.   

 

 

 

 

1.2 Numerical Methods 

 

 

Physical phenomenon is usually described by a set of partial differential 

equations (PDEs).  By solving the equations, information of interest can be obtained.  

For simple set of equations, closed form solution may be available.  But, for complex 

problems, solutions are commonly obtained by solving the equations numerically 

rather than analytically.  Methods used in obtaining such solutions are classified as 

numerical methods. 

 

 

At present, there are various numerical methods have been developed such as 

Finite Difference Method (FDM), Finite Element Method (FEM), Boundary Element 
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Method (BEM), Finite Volume Method (FVM) and many more.  Amongst these 

methods, the most established and famous are FDM and FEM.   

 

 

FDM can be considered as the earliest form of numerical method which 

history of development can be traced back as early as 1930’s (Thomee, 2001).  The 

basic idea of FDM is to convert the continuous nature of PDE into algebraic 

equations in matrix forms by replacing the derivative terms with forward, backward 

or central difference equations.  The advantage of FDM relies on its straightforward 

implementation as well as on the fact that it operates directly of the PDEs, hence the 

term strong form.  However, the disadvantage of FDM is in the modeling of irregular 

domain.  Although there are several mapping techniques have been developed, these 

techniques are not as convenient as FEM when it comes to modeling irregular 

domain.   

 

 

FEM, as mentioned, is a numerical method which advantage is in its 

efficiency in modeling irregular body shapes and problem domains.  Such efficiency 

is due to the use of interpolation functions to approximate the problems variables.  

Historically, FEM was developed during the 1950’s (Bathe, 1996).  Whilst the first 

reported work on FEM can be attributed to the work of the famous mathematician, R. 

Courant in 1943, the major development of the method, especially in the engineering 

fields began with the work of Turner et.al (1956) and the separate work by Argyris 

and Kelsey (1954).  The basic idea in FEM is to discretize the continuous nature of 

the PDEs by weaken into a weak statement.  This can be obtained by employing 

either weighted residual approach or variational approach.  Either approach will yield 

similar algebraic equations in matrix forms.  With the advent of computer 

technology, FEM has become an established numerical methods applied in various 

fields to include engineering, physics, chemistry and biology (Mackerle, 2002).   

 

 

Despite the establishment of FDM and especially FEM, researches have been 

conducted in finding new numerical methods and looking at other possibilities for 

better algorithms.  The most notable would be BEM which development was at its 
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height in the 1970’s (Brebbia and Dominguez, 1977).  The basic idea of BEM is to 

convert the continuous nature of the PDEs by conducting integration by parts until 

the differential operators on the unknown variables completely transferred onto the 

weighting functions.  Such act allows the problem to be defined by the boundary 

terms only.  However, this method suffered from the need to employ fundamental 

solutions or Green functions as the weighting functions which are difficult to be dealt 

with.   

 

 

Further research works in the field of numerical method development then led 

to the introduction of a new family of numerical methods termed as Meshfree or 

Meshless methods in the 90’s (Liu and Gu, 2005).  This is the interest of this study 

thus is discuss next.   

 

 

 

 

1.3 Meshfree Methods 

 

 

Meshfree methods can be considered as the latest output in the research 

development of numerical techniques.  The inventions were motivated by the attempt 

to remove the need for predefined meshes which are required in FEM.  It is argued 

that, with the removal of the mesh, computer cost in the mesh development as well as 

in mesh refinement can be omitted.  Therefore, since there could be various ways in 

doing this, Meshfree methods do not refer to specific method but to a family of 

methods.  Methods that fall under this family, amongst others are; Point Interpolation 

Method (PIM), Radial Point Interpolation Method (RPIM), Element Free Galerkin 

(EFG), Smooth Particle Hydrodynamic (SPH), Meshless Local Petrov Galerkin 

(MLPG), Diffuse Element Method (DEM), and Boundary Node Method (BNM).  

However, due to constraints, this study only considers PIM, RPIM and EFG.   
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Since Meshfree methods do not require predefined mesh, the construction of 

shape functions must be carried out afresh for every analysis.  This then becomes the 

major work in any Meshfree formulations.  In PIM, the shape functions are 

constructed by using polynomial interpolation whilst in RPIM, a special interpolation 

is employed termed as radial basis function.  For EFG, the construction of the shape 

functions involve the use of quartic function and the imposition of stationary 

condition of weighted discrete norms.  All these are going to be detailed in the 

upcoming chapter.   

 

 

Another major topic in the development of PIM, RPIM and EFG is the effect 

of several parameters during the construction of the shape functions.  Optimum 

values of the parameter are required which are best determined by conducting a 

series of numerical test on a typical problem as these values can be different from 

one case to another  (Liu and Gu, 2005). 

 

 

Since Meshfree methods, especially PIM, RPIM and EFG, are relatively new, 

more studies are needed to investigate the robustness and generality of the methods 

especially in practical application (Liu and Gu, 2005). 

 

 

 

 

1.4 Problem Statement 

 

 

The hydrologic phenomenon of surface runoff and channel flow can be 

studied by solving kinematic wave equation.  However, due to the nonlinearity and 

the unsteady state of the equation, no closed form solution is available except for the 

simplest case of no lateral flow and constant wave celerity.  Therefore, in obtaining a 

more general solution, at present, kinematic wave equation is commonly solved 

either by using FDM (Chow et.al, 1988) or FEM (Vieux et.al (1990), Litrico et.al 

(2010)).   
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However, despite the various works and formulations of FDM and FEM on 

kinematic wave equation, there are yet PIM, RPIM and EFG formulations for the 

equation.  Such undertake is thus important as not only can it provide alternative 

methods in the field of hydrology but also assists in the establishment of the 

Meshfree methods by widening its study and development into the field of civil 

engineering, in particular hydrology and river engineering.  Also, by carrying out 

such undertaking, the study can also be among the first to provide data on optimum 

values of parameters which govern the performance of the Meshfree methods 

especially in the field of hydrology and river engineering.    

 

 

 Based on these, it is therefore the main interest and purpose of this study to 

the develop PIM, RPIM and EFG formulations for kinematic wave equation. 

 

 

 

 

1.5 Objectives of Study 

 

 

i. To derive and formulate PIM, RPIM and EFG formulations for kinematic 

wave equation and write the corresponding Matlab source-codes.  For 

performance assessment purposes, source codes for FEM and FDM are also 

written. 

 

ii. To validate the formulation against previous works (benchmark problems) 

 

iii. To conduct parametric study (numerical test) to determine the optimum range 

and value of parameters in ensuring the best performance of the Meshfree 

methods 
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iv. To conduct performance study in terms of convergence rate and computer 

resource consumption in assessing the potential of the Meshfree methods 

against the established numerical methods; FDM and FEM 

 

 

 

 

1.6 Scope and Limitation of Study 

 

 

i. To limit the scope of the study, only three type of Meshfree methods are 

considered which are PIM, RPIM and EFG  

 

ii. The study strictly involves with mathematical derivations and computer 

programming thus no direct experimental works are conducted due to 

time constraint.  However, the absence of direct experimental work is 

compensated by the validation and verification which are carried out 

against the actual gauged data provided by one of the benchmark problem 

 

iii. All assumptions in St Venant equations and kinematic wave equation 

holds 

 

iv. Although one of the main advantage of Meshfree methods is in the ease 

of treating irregular arrangement of nodes hence refinement process, due 

to the pioneering nature of this study, only uniform distribution of nodes 

is considered and no consideration is given in the refinement process  

 

v. Despite the availability of various nonlinear schemes and time-integration 

methods available, this study only employs Picard and Newton-Raphson 

as iterative schemes and backward difference as the time-integration 

methods because of their simplicity but good convergence. 

 

vi. Despite the availability of various radial basis functions and spline 

functions for the construction of shape functions of RPIM and EFG 
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respectively, this study only employ multi-quadric function for the former 

and quartic spline function for the latter because they are the most basic 

function and generally used. 

 

 

 

 

1.7 Significance of Study 

 

 

This study is one of pioneering work of PIM, RPIM and EFG methods in 

hydrologic modeling especially in the solution of kinematic wave.  It provides insight 

into the performance of the methods mentioned in terms of convergence rate and 

computer resource consumption as well as one of the first to report on the optimum 

ranges and values of parameters of the methods.  Such information would be useful, 

not only for future studies of Meshfree as numerical methods but also in practical 

realm of civil engineering and hydrology. 

 

 

 

  

1.8 Outline of Thesis 

 

 

This thesis comprises of six chapters outlined as follows. 

 

 

CHAPTER 1: This chapter introduces the general idea of hydrologic 

modeling and corresponding methods of study.  It describes 

relevant theories and equations.  An introduction is also 

given on various numerical methods to include their brief 

history, basic idea and current state of development and 

application.  Problem statement in then outlined in detailing 

the need for the study to be conducted followed by the 
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objectives of the study.  To clarify the framework of the 

study, scope and limitation are detailed out.  The 

significance of study is then highlighted. 

 

CHAPTER 2: In this chapter, relevant previous works are reviewed and 

discussed.  The discussion begins with works related to St 

Venant equations especially on kinematic wave equation.  

Then, previous works on FDM and FEM related to the 

solution of the equation are reviewed and discuss.  The final 

part of the chapter focuses on the current state of knowledge 

on Meshfree methods especially PIM, RPIM and EFG. 

 

CHAPTER 3: This chapter concerns the mathematical derivations of both, 

the kinematic wave equation and the relevant numerical 

formulations.  Established numerical method are derived 

first; FEM followed by FDM.  Then detailed derivation of 

the shape functions leading to the discretized algebraic 

equations in matrix forms are given for PIM, RPIM and 

EFG. 

 

CHAPTER 4: In this chapter, all formulations and their corresponding 

source codes are validated by comparing their results against 

three benchmark problems; Chow et. al. (1988), Vieux et.al 

(1990) and Litrico et.al (2010).  Reasons for the selection of 

these problems as benchmark are detailed.  Besides 

validation of the formulation, validation on the use of 

different iterative schemes is also provided. 

  

CHAPTER 5: This chapter is divided into two parts.  The first parts 

concerns the parametric studies in which series of numerical 

tests are conducted in determining the optimum ranges and 

values of parameters affecting the performance of the 

Meshfree methods.  In the second parts, the optimum values 
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are then used in the formulation to assess the performance of 

the Meshfree methods relative to the established ones (FDM 

and FEM).  Their performance in terms of convergence rate 

and computer resource consumption (CPU time) are 

assessed. 

 

CHAPTER 6: This is the final chapter of the thesis.  In this chapter, 

findings obtained from the study are summarized and 

concluded.  Suggestions for future works are given at the 

end of the chapter.   
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6.4 Suggestions for Future Works 

 

 

 As mentioned, this study is a pioneering work in the discretization of 

kinematic wave equations by Meshfree methods specifically PIM, RPIM and EFG. 

Due to its pioneering nature, this work has limitations which can be extended in 

future works. It is suggested that the formulations be extended: 

 

 

i. To allow for  irregular distribution of nodes and automated for adaptive 

analysis where decision on the  distribution and number of nodes is 

automatically made based on the needs of the analysis i.e. at the region of 

high gradient, moving boundaries, discontinuities etc.  

 

ii. For network system where a number of branches (representing watershed 

draining or rivers) can be modeled. This will make the formulation more 

general and able to capture greater spatial variability of parameters. 

 

iii. To other forms of St. Venant equations namely diffusion and full 

dynamics as this will make the formulation more general and practical 

(i.e. allow backwater) 

 

iv. To other Meshfree methods such as smoothed particle hydrodynamics 

(SPH) and Reproducing Kernel Particle Method (RKPM). 
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