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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background of Research 

 

Fiber optic sensor technology has been and increasingly exploited by the research 

community because of its relatively simple design, low power consumption, low cost, 

relatively low maintenance cost, and the flexibility it offers.  Optical fiber sensors show 

superior potential for many applications such as biosensor for Deoxyribonucleic Acid 

(DNA) quantification (Gonçalves et al., 2016), fiber optic seismic sensor (Liu et al., 

2015), structural health monitoring (Petrovic et al., 2016), and medical monitoring 

(Poeggel et al., 2015).   

 

Recently, a new class of waveguide, photonic crystal fibers (PCFs) has become 

an interesting and extensively developed subject in the worldwide optical field research, 

leading to a large variety of its designs and applications (Liu et al., 2013).  The PCFs 

which is also known as microstructured fibers (MOFs) are distinguished from the 

standard “step-index”optical fibers.  PCFs cladding are formed by low refractive index 

inclusions, such as air holes, that run along to the entire fiber core length.  PCFs have 

unique properties which are frequently superior to traditional fibers’ parameters such as 

lower bending losses, better chromatic dispersion compensation and endlessly single 

mode light propagation for a very broad wavelength range (Stepien et al., 2014).  



2 
 

Furthermore by appropriate selection of fibers’ microstructure properties such as the 

hole size, distance between holes – lattice pitch, geometry and the air holes position, 

PCFs can be fabricated with specific properties. 

 

PCF can be designed to be single mode for a wide range of wavelengths 

compared with conventional fiber, whereas special geometries can provide high 

birefringence to these types of waveguides.  As a result of the absence of rigid 

boundaries at the core-cladding interface, light travels in the same material minimizing 

material dispersion effects; this plays a strong influence on the wave-guidance of 

conventional optical fibers (Koutsides et al., 2012).  These interesting characteristics 

turn PCF to critical components in new generation optical sensing applications.  In the 

previous years, a number or techniques have been presented to measure multiple 

measurands.  Fiber Bragg Grating (FBG) is an established technique which can be 

incorporated into PCFs based sensor to further enhance sensing capability.  The 

continuing research, by various groups around the world, into the development of optical 

fiber sensors suitable for the simultaneous measurement of temperature and strain 

indicates the importance of this issue to many areas of technology.  

 

1.2 Problem Statement 

 

A number of techniques involving standard single mode fiber (SMF) have been 

demonstrated to measure a wide set of strain and temperature parameters.  However, the 

main problem encountered by traditional optical fiber sensors incorporating FBG is the 

incapability of distinguishing strain and temperature.  It is known that FBG is sensitive 

to both parameters, and therefore require temperature compensation mechanism.  

Meanwhile, is virtually insensitive to temperature as the core and cladding is made of 

only one material and also due to the air hole structure of the pure silica PCF (Najari et 

al., 2015), hence suits for strain measurement.  A sensing technique utilizing a FBG 

written on a conventional single-mode fiber and a long-period grating (LPG) written on 
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a PCF is demonstrated (Zhao et al., 2009).  In the system, the wavelength change of the 

FBG with environmental temperature is transferred to the intensity of the output via the 

LPG.   

 

Other instance, PCF Bragg grating sensing scheme is demonstrated for 

simultaneous measurement of strain and temperature.  By writing gratings with similar 

Bragg wavelengths into two sections of PCF, and filling one of them with alcohol, 

different temperature sensitivities are obtained while leaving the strain sensitivities 

similar (Naeem et al., 2014).  In order to use the two similar PCF-FBGs for 

simultaneous sensing of strain and temperature, the air holes of one of the PCF-FBG are 

filled with alcohol (methanol) which in turns shifts its Bragg wavelength.  However, 

these sensors required two separate elements in one sensor system to allow for 

temperature compensation purposes.  Therefore, a new sensing scheme is proposed as an 

alternative technique which allows strain and temperature measurement by 

implementing erbium-doped PCF as a sensor.  The erbium ion in the PCF is used to 

produce fluorescence in the emission band which is independent of temperature and 

results in the development of temperature as well as strain sensor.  Besides that, it is 

proven that the strain sensitivity of the air-silica PCF sensors is higher than conventional 

SMF based sensors but the temperature sensitivities of the PCF sensors are much lower 

(Najari et al., 2015). 
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1.3 Objectives of Research 

 

This research concentrates on a configuration in which both ends of the erbium-

doped PCF are spliced to SMFs.  Based on the above mentioned research problem 

statement, the research objectives can be specified as: 

 

 

1) To model and simulate the erbium-doped PCF in order to obtain effective 

refractive index of the fiber.  

 

2) To develop a sensing scheme based on erbium-doped PCF which is capable of 

discriminating strain and temperature measurement. 

 

3) To attain improvement in error resolution and sensitivity for the developed 

erbium-doped PCF sensor via matrix analysis. 

 

1.4 Scope of Research 

 

This research starts with detailed literature and technology reviews.  The erbium-

doped PCF structure is modeled and simulated using a commercially available finite 

element software tool; COMSOL Multiphysics software to characterize the PCF in term 

of the effective refractive index and confinement loss.  The erbium-doped PCF sensor is 

developed through a splicing process which is tailored to this special fiber in term of its 

fiber handling and machine settings which differ from splicing SMF to SMF, such as 

reduced arc power and shortened fusion time of 0.2-0.5s.  Optimization of a fused splice 

between a PCF and SMF, using a conventional fusion splicer, is performed.  Next, the 

preparation of instrumentation and experimental platform is executed.  This is achieved 
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by calibrating a 974 nm pump laser to avoid excess power into the erbium-doped PCF 

sensor or other devices and components that can cause damaged. Selection of laser 

pump power is also carry out in this work in order to determine the suitable power which 

is set fixed throughout the whole experiments.  

 

Then, the developed erbium-doped PCF sensor is centered in a stabilized oven 

for calibration tests in order to measure the temperature via two types of fluorescence 

techniques which are the Fluorescence Intensity Ratio (FIR) and Fluorescence Peak 

Power Ratio (FPPR).  The fluorescence intensity of the emission at wavelengths range 

of 1525-1535 nm and 1545-1555 nm in the erbium-doped PCF sensor is studied as a 

function of temperature, over the range of 30-150 oC, using a 974 nm laser diode.  A 

pulley system is used to apply a strain range of 200-850 µε to the erbium-doped PCF 

sensor whereby the mass that is added determined the overall strain exerted on the test 

fiber.  The experimental results are analyzed based on two different configurations 

which are the intensity-based interrogation and combination of intensity and 

wavelength-based incorporating FBG interrogation.  Both interrogations are analyzed 

using matrix method for strain-temperature de-convolution and the performances are 

observed in term of the sensitivity and error values of the sensor. 

 

1.5 Significances and Contributions 

 

The measurement of both temperature and strain is highly desirable in a range of 

industrial applications, e.g., structural health monitoring of composite structures in 

various temperature environments (Park et al., 2009).  In order to develop and 

implement this scheme, a thorough understanding of the configuration which involves 

fluorescence ratio technique of the erbium-doped photonic crystal fiber is crucial. 

 

 The first contribution of this research work is the proposed sensor scheme 

developed based on two different configurations which are the intensity-based 
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interrogation and combination of intensity and wavelength-based incorporating FBG 

interrogation.  Both interrogations are analyzed using matrix method for strain-

temperature de-convolution.  Since PCF is insensitive to temperature due to the low 

thermo optic coefficient, therefore FIR and FPPR technique is used to measure 

temperature utilizing the fluorescence in the erbium-doped PCF.  Moreover, 

fluorescence ratio technique has the advantage of using strain-independent temperature 

measurement allowing for increased flexibility in the de-convolution of temperature and 

strain.  Implementing PCF using fluorescence ratio technique has not been developed yet 

based on our knowledge for such dual temperature and strain measurement. 

 

The second contribution of this research work is the optimization of splicing and 

selection of suitable pump power.  The sensor for dual strain and temperature 

measurements are based on erbium-doped PCF which is spliced between two SMF 

fibers using conventional fusion splicer machine.  A manual recipe is developed to 

fusion splice the PCF and SMF which consists of a short fusion time, low power electric 

arc, smaller gap between PCF and SMF, and an axial offset position.  Other than that, 

the suitable pump current of the 974 nm laser diode is determine such that the effect of 

lasing is avoided in this work.     

 

The third contribution of this research work is the modeling and designing of this 

particular erbium-doped PCF using COMSOL software which has not been developed 

yet based on our knowledge.  This erbium-doped hexagonal PCF with 7 rings of air 

holes has a central core region which is perturbed by erbium doping.  The refractive 

index of erbium doped silica is computed by modifying the equation from literature 

based on the coefficients for erbium.  The effective refractive index of the erbium-doped 

PCF is determine to minimize the internal reflection in the fiber.  This information is 

useful for the development of the erbium-doped PCF sensor whereby the erbium-doped 

PCF is spliced to SMF.   
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1.6 Overview of Thesis 

 

This thesis describes the temperature and strain sensing of a developed erbium-

doped PCF sensor.  The fluorescences in the erbium-doped PCF sensor are utilized for 

temperature measurement.  In this Chapter 1, the background and fundamental problem 

of this research work are discussed.  The objectives and scope of this work are explained 

in detail.  The significant and contributions in this work is also presented.  Chapter 2 

introduces the comprehensive literature review on the fundamental PCF and 

technologies apply.  This chapter gives an overall picture of current technologies of PCF 

sensors and their applications.  A review of various PCF sensor configurations for 

temperature and strain sensing is presented and the technologies employed are examined 

and discussed.  In this chapter, the theoretical background such as fundamental of the 

fluorescence techniques are explained.  Various splicing techniques are also reviewed. 

 

Chapter 3 discusses on the modeling of erbium-doped core PCF which has 7 

rings of hexagonal air holes.  The PCF structure with a perfectly matched layer (PML) is 

modeled and simulated using Finite Element Method (FEM) via COMSOL Multiphysics 

software.  The PML is optimized by varying the internal radius and the thickness of the 

layer.  Modal properties of the PCF have been characterized in term of its effective 

index of the supported fundamental mode and confinement loss.  The effective refractive 

index of the erbium-doped PCF is determined to minimize the internal reflection in the 

fiber.  This information is useful for the development of the erbium-doped PCF sensor 

whereby the erbium-doped PCF is spliced to SMF. 

 

Chapter 4 discusses the instrumentation and experimental platform required 

before performing the calibration tests for the developed erbium-doped photonic crystal 

fiber sensor.  This PCF fiber sensor is developed by splicing the PCF to SMF using 

conventional fusion splicer machine.  Other than that, this chapter also discusses the 

laser calibration which is necessary in order to avoid excess power into the sensor or 
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other devices and components that can cause damage.  Selection of laser pump power is 

also discussed in this chapter in order to determine the suitable power which is set fixed 

throughout the whole experiments.  The final sub-topic in this chapter is the 

experimental setups for temperature and strain measurement.  

 

Results and analysis of the experimental works for the developed erbium-doped 

PCF sensor are discussed in Chapter 5.  The experimental results are analyzed based on 

two different configurations which are the intensity-based interrogation and combination 

of intensity and wavelength-based incorporating FBG interrogation.  FIR and FPPR 

technique is used to measure temperature utilizing the fluorescence in the erbium-doped 

PCF.  Both interrogations are analyzed using matrix method for strain-temperature de-

convolution and the performances are observed in term of the sensitivity and error 

values of the sensor.  The conclusions, contributions and future work of this 

investigation are summarized in Chapter 6.  
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