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ABSTRACT 

 

A simple and reproducible method for in-situ entrapment of laccase in 
mesoporous silica microparticles (LSM) was studied. This involved the hydrolysis 
and condensation of tetraethyl orthosilicate (TEOS) via sol-gel route using one-step 
(base catalyst) and two-step (acid-base catalyst) methods followed by an ambient 
drying procedure. It was found that the one-step method was not suitable for in-situ 
entrapment as it left a significant amount of untrapped laccase in the reaction media 
which led to the inactivation of laccase due to its active site alteration by continuous 
contact with basic condition. Conversely, the laccase was entrapped entirely in the 
silica matrices which were synthesized using the two-step method with the highest 
specific catalytic activity of 434.71 U/g obtained from the 2-LSM15 sample. In 
addition, the LSM showed an improvement in stability towards pH and temperature 
compared to the free laccase and was able to retain more than 80% of its initial 
catalytic activity after one month of storage. The synthesis condition for laccase 
entrapment was then optimized using a 3-level-4-factor Box–Behnken experimental 
design to investigate the relationships of the starting material compositions towards 
the catalytic activity of the entrapped laccase. The optimal condition for laccase 
entrapment obtained from the response surface methodology (RSM) at H2O/TEOS = 
5.44 by molar, HCl = 2.52 mol ×10-6, TEA = 0.39 mol ×10-3 and Lac = 3.83 mg/ml. 
The predicted response of the maximum solution was 301.7 U/g and the 
experimental value was 298.36 U/g, respectively, under the optimal condition. 
Moreover, the sample was capable of retaining almost 90% of the original catalytic 
activity after 10 repeated recovery and uses. The application of the LSM was further 
investigated for the degradation of oxytetracycline (OTC). As the temperature 
increases, OTC component became unstable thus made the use of laccase for OTC 
degradation unnecessary. On the other hand, the OTC component turned out to be 
more stable as the pH increased. However, when LSM was applied, 68-88 % of OTC 
was degraded under previous circumstances. In the kinetic study, opposite pattern of 
the degradation kinetics rate constants was observed for free laccase and LSM as the 
amount of enzyme loading increases. The corresponding constant values for free 
laccase decreased, while the values for LSM experienced a decent escalation. The 
LSM with a dosage of 4:1 resulted in the highest turnover number (Kcat= 140136.99 
min-1) of OTC molecules converted to product per enzyme molecule per unit of time 
and with catalytic efficiency, Kcat/Km= 814.75. 
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ABSTRAK 

 

Satu kaedah mudah dan boleh diulang untuk pemerangkapan in-situ lakase di 
liang meso pada silika berzarah mikro (LSM) telah dikaji. Ia melibatkan hidrolisis 
dan pemeluwapan tetraetil orthosilikat (TEOS) melalui kaedah sol-gel menggunakan 
satu langkah (pemangkin bes) dan dua langkah (pemangkin asid-bes) diikuti dengan 
pengeringan ambien. Kaedah satu langkah telah didapati tidak sesuai untuk tujuan 
pemerangkapan in-situ memandangkan ia telah meninggalkan sejumlah lakase yang 
ketara yang tidak terperangkap dalam media tindakbalas dan membawa kepada 
penyahaktifan lakase kerana pengubahan tapak aktif oleh pendedahan yang 
berterusan dengan keadaan bes. Sebaliknya, lakase terperangkap sepenuhnya dalam 
matriks silika yang disintesis menggunakan kaedah dua langkah dengan aktiviti 
spesifik setinggi 434.71 U/g diperolehi dari 2-LSM15. Di samping itu, LSM 
menunjukkan peningkatan terhadap kestabilan pH dan suhu berbanding lakase bebas 
dan dapat mengekalkan lebih 80% daripada aktiviti awal pemangkin selepas satu 
bulan tempoh penyimpanan. Keadaan sintesis untuk pemerangkapan lakase 
kemudian dioptimumkan menggunakan rekabentuk eksperimen Box-Behnken 3-
peringkat-4-faktor untuk menyiasat hubungan antara komposisi bahan permulaan 
terhadap aktiviti pemangkin lakase yang terperangkap. Keadaan optimum untuk 
pemerangkapan lakase telah diperolehi melalui kaedah gerak balas permukaan 
(RSM) pada H2O / TEOS = 5.44 oleh molar, HCl = 2.52 mol × 10-6, TEA = 0.39 mol 
× 10-3 dan Lac = 3.83 mg/ml. Reaksi ramalan dari penyelesaian maksimum adalah 
301.7 U/g dan nilai dari eksperimen adalah 298,36 U / g, masing-masing, di bawah 
keadaan yang optimum. Selain itu, sampel optimum mampu untuk mengekalkan 
hampir 90% daripada aktiviti pemangkin asal selepas 10 pemulihan berulang dan 
kegunaan. Aplikasi LSM untuk degradasi antibiotik kemudiannya dikaji 
menggunakan oksitetrasiklin (OTC) sebagai model antibiotik. Apabila suhu 
meningkat, komponen OTC menjadi tidak stabil seterusnya membuatkan 
penggunaan lakase untuk degradasi OTC tidak diperlukan. Sebaliknya, komponen 
OTC ternyata menjadi lebih stabil apabila pH meningkat. Walau bagaimanapun, 
dengan penggunaan LSM, OTC telah mendegradasi 68-88% di bawah keadaan 
sebelumnya. LSM juga menunjukkan keupayaan degradasi yang lebih tinggi untuk 
OTC berbanding lakase dalam bentuk bebas. Kadar tindak balas untuk degradasi 
OTC oleh LSM meningkat dengan dos yang semakin meningkat, sebaliknya nilai 
kadar tindak balas menurun dengan penggunaan lakase bebas. LSM dengan dos 4: 1 
menghasilkan jumlah tertinggi perolehan (Kcat = 140.136,99 min-1) yang mana 
molekul OTC ditukar kepada produk per molekul enzim per unit masa dan dengan 
kecekapan pemangkin, Kcat/Km = 814,75. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Research Background 

 

Laccases (benzenediol: oxygen oxidoreductase; EC 1.10.3.2) belongs to the 

superfamily of multicopper oxidases. Among the oxidative enzymes, laccases have 

received a lot of attention from researchers due to their peculiar catalytic properties, 

offering great potential for biotechnological and environmental applications (Bollag, 

1992). This oxidoreductase enzyme is classified based on its oxidation-reduction 

reaction. Laccases are the oldest and most studied enzymatic systems which are 

widely present in nature. Yoshida first described laccase in 1883 when he extracted it 

from the exudates of the Japanese lacquer tree, Rhus vernicifera. The biological roles 

of laccase are diverse in nature (Mayer and Staples, 2002). In fungi, laccases carry 

out a variety of physiological roles including morphogenesis, fungal plant pathogen/ 

host interaction, stress defense, and lignin degradation (Thurston, 1994; Gianfreda et 

al., 1999).  In plants, laccases have been found in the wood and cellular walls of 

herbaceous species, where they participate in lignin biosynthesis (Sato et al., 2001). 

Bacterial laccases appear to have a role in morphogenesis (Sharma et al., 2007), in 

the biosynthesis of the brown spore pigment and protection afforded by the spore 

coat against UV light and hydrogen peroxide, and also in copper homeostasis. While 
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the main function of the laccase-type proteins in insects is believed to be 

sclerotization of the cuticle in the epidermis (Dittmer et al., 2004). 

 

 

In the function of substrate specificity, laccases are remarkably non-specific 

as to their reducing substrates, but the range of substrates oxidized varies from one 

laccase to another. Laccases has broad substrates specificity including organic 

pollutants such as chlorinated phenol and polycyclic aromatic hydrocarbons (PAHs) 

(Forootanfar et al., 2012; Dehghanifard et al., 2013) and synthetic dyes (Gholami- 

Borujeni et al., 2011; Ashrafi et al., 2013; Mirzadeh et al., 2014). The ability of 

laccases to oxidize some pharmaceutical agents such as diclofenac, naproxen, 

ketoprofen, oseltamivir, tetracyclines, sulfonamides, erythromycin, and estrogenic 

hormones has been reported as well (Lloret et al., 2010, 2013; Rodríguez-Rodríguez 

et al., 2012; Sathishkumar et al., 2012; Suda et al., 2012). The use of laccase has 

been explored for wide applications including the detoxification of industrial 

effluents, mostly from paper and pulp (Crestini and Argyropoulos, 1998; Wesenberg 

et al., 2003), textile and petrochemical industries, medical diagnostics and as a 

bioremediation agent to clean up herbicides, pesticides, and certain explosives in 

soil.  Laccase was also used as cleaning agents for certain water purification systems 

and waste water treatment, as catalysts for the manufacture of anti-cancer drugs and 

even as ingredients in cosmetics. Besides that, laccase also has the capacity to 

remove xenobiotic substances (Dur´an and Esposito, 2000; Torres et al., 2003), to 

transform antibiotics and steroids, as well as produce polymeric products which 

makes them a useful tool for bioremediation purposes (Rodriguez Couto and Herrera, 

2006). 

 

 

Even though free laccases are effective in various industrial and 

biotechnological applications, there are still many constraints on their application in 

real effluents. The non-reusability of free laccase and its deactivation by temperature, 

pH, and inhibitors are the setback which consequently will reduce their activity and 

limit their usefulness. These limitations however can be overcome by the 

immobilization of enzyme and it is the most straightforward way to implement 

enzyme-based processes (Lloret et al., 2011). Immobilization is achieved by fixing 
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enzymes to or within solid supports, as a result of which heterogeneous immobilized 

enzyme systems are obtained. The major advantages of laccase immobilization are 

the increase in the thermostability of the enzyme and its resistance to extreme 

conditions and chemical reagents (Fernández-Fernández et al. 2012). In addition, 

immobilized laccases may be easily separated from the reaction products, allowing 

the enzymes to be employed in continuous bioreactor operations (Arica et al., 2009; 

Georgieva et al., 2008). 

 

 

 

 

1.2 Problem Statement 

 

 

Development of a simple and reliable procedure for enzyme immobilization 

is always an important aspect of biotechnology. Formulation is a key step because it 

determines to a large extent the biocatalyst performance, the immobilization yield 

and the contribution of the biocatalyst to the total cost of a bioprocess (Tufvesson et 

al., 2010). In addition to this, the enzyme demands mild experimental conditions 

(pressure, temperature, pH etc.) must be considered in the design as well. In some 

cases, although laccase has been successfully immobilized, the immobilization yield 

was less than 50% of the initial laccase concentration (Annibale et al., 1999).  Even 

though there is stability enhancement of the immobilized laccase, the catalytic 

activity appeared to be lower than laccase in the free form (Brandi et al., 2006). 

Some studies have also reported a complex and multistep procedure which takes a 

few days to complete (Qiu and Huang, 2010; Machado et al., 2012), this will be a 

waste of time and may affect the total production cost subsequently.  

 

 

Several techniques may be applied to immobilize laccases. They are mainly 

based on ex-situ and in-situ immobilization technique. The ex-situ immobilization 

involves preparation of the support material followed by either adsorption or 

covalent binding between enzyme and silica support surfaces. The adsorption of 

laccase onto a support is based on ionic and/or other weak forces of attraction, 
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whereas covalent binding utilizes activation of chemical groups on the support 

surface with nucleophilic groups on the laccase. Laccases have been reported with 

stability improvement by ex-situ immobilization on numerous supports, such as 

porous and non-porous glass, agarose, amorphous silica, organic gels or kaolinite, 

graphite, and chitosan (see review by Durán et al., 2002; Fernández-Fernández et al. 

2012). However, apart from the stability improvement, ex-situ immobilization often 

resulted in lower immobilization yield and may be attributed to leaching due to the 

weakening of binding strength between the matrix and the immobilized enzyme from 

repeated use (Singth et al., 2014). The covalent binding may perturb the enzyme 

native structure and lead to reduction of enzyme activity (Duran et al., 2002).  

Besides, the ex-situ procedure becomes disadvantageous since the process is 

somehow time consuming with separate preparation of support matrix and the 

immobilization procedure which could lead to an upsurge cost (Huang et al., 2006; 

Huang et al., 2007). 

 

 

On the other hand, in-situ immobilization technique involves entrapment of 

the enzyme within a polymer lattice or its encapsulation in an organic or inorganic 

polymer (membranes). In this technique, the preparation time could be lessens since 

the support material and enzyme immobilization are prepared simultaneously. It is 

basically a controlled of enzyme loading and may provide relatively small 

perturbation of the enzyme native structure and function (Durán et al., 2002). 

However, the main drawback of these immobilization methods is mass transfer 

limitation (Brady and Jordaan, 2009). Another method considered as in-situ 

technique is self-immobilization, it is a carrier-free immobilization which did not 

depends on any support material. It utilizes bifunctional cross-linkers to form 

enzyme aggregates, but their major drawback is the high purity required for the 

crystallization of the enzyme (Fernández-Fernández et al. 2012).  

 

 

Therefore, in approaching this issue, the present study was conducted to 

develop a simple and reproducible method for laccase immobilization. The in-situ 

immobilization technique using entrapment method has been chosen in order to 

simplify the procedure and to reduce the processing time. The usage of harsh 
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chemical and harsh condition as well as fancy equipment (such as sonicator, 

autoclave, or freeze dryer) is not implemented in developing this procedure. Laccase 

was immobilized in mesoporous silica microparticles to encounter the mass transfer 

limitations (Carlsson et al., 2014) and air dried under ambient condition to preserve 

the immobilized laccase. The developed immobilization procedure was further 

optimized to find the best condition for laccase entrapment, followed by degradation 

of oxytetracyline (an antibiotic) to demonstrate the applicability of the immobilized 

laccase. From previous studies, removal of OTC using photo-irradiation (Shaojun et 

al., 2008) and ozonation (Li et al., 2008) results in higher toxic level in the after 

treatment solution. Thus, utilization of environmental friendly process using laccase 

through enzymatic treatment for removal of OTC is introduced in this study. 

 

 

 

 

1.3 Objectives of the Research 

 

The objectives of the research are: 

 

a) To synthesis and characterize laccase entrapped in mesoporous silica 

microparticle (LSM).  

 

b) To optimize the synthesis condition for LSM using response surface 

methodology (RSM). 

 

c) To investigate LSM biodegradation performance using oxytetracyline. 
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1.4 Scopes of Research 

 

The scopes of research are presented to specify in details the objectives of research 

that stated above: 

 

a) In-situ entrapment of laccase in mesoporous silica microparticles which 

involved hydrolysis and condensation of tetraethyl orthosilicate (TEOS) was 

studied via sol-gel route using one-step (base catalyst) and two-step (acid-

base catalyst) methods followed by an ambient drying procedure. The 

influence of the methods used, the compositions of the starting material and 

the aging conditions towards polymeric structure and catalytic activity of the 

laccase entrapped in mesoporous silica microparticles (LSM) were 

investigated. . In order to characterize the LSM, their catalytic activity and 

stability will be observed as well as their physical properties such as particle 

morphology, specific surface area, average pore volume, size, and 

determination of the functional group.  

 

b) The synthesis condition for LSM was further optimized in this study to obtain 

the optimal condition for laccase immobilization. The response surface 

methodology (RSM) based on a 3-level-4-factor Box–Behnken experimental 

design was employed to establish the relationships among the independent 

synthesis variables (ISV) as well as to search for an optimal synthesis 

condition for laccase entrapped in mesoporous silica microparticles (LSM). 

The ISV comprise of H2O/TEOS molar ratio (H2O/TEOS), hydrochloric acid 

loading (HCl), triethylamine loading (TEA), and laccase loading (Lac) were 

evaluated towards the laccase specific catalytic activity (As) response as the 

dependent variable.   

 

c) Several parameters which are reaction temperature, reaction pH and reaction 

time were varied in order to investigate the biodegradation performance of 

free laccase and LSM using oxytetracyline as substrate. The degradation 

kinetic study and reusability were carried out afterward. 
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lessens. In some cases, the removal of the parent compound was successful. 

However, the process yielded toxic intermediates with harmful effects on the 

organisms. Growth inhibition of standard microbial strains (for example, Bacillus 

megaterium, E. coli, and Saccharomyces cerevisiae) is one of the most commonly 

applied methods for such evaluation.  The measurement of BOD5 and COD were 

also significant for the evaluation of the biodegradability. Hopefully these findings 

will contribute to the body of knowledge on subject concerning laccase 

immobilization as well as their potential applications for future research. 
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