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ABSTRACT 

Molecular modeling plays an essential role in searching for new and better 

organic electronic materials with excellent electronic and chemical properties to design 

organic electronic devices. In this research, we have studied some electronic, chemical 

and vibrational properties of linear acenes (from benzene to heptacene), and the 

additional effect of halogens, cyanate, and thiophene to linear acenes. The possible 

molecular properties of linear acenes and their derivatives as a function of a number of 

the fused benzene rings and the total number of carbons were studied. The computation 

is carried out using NWchem 6.3 code and Molden for molecular structure visualization. 

Hartree-Fock (HF), Density Functional Theory (DFT) and MØller-Plesset (MP2) level of 

the theories with B3LYP exchange functional using 6-311G, 6-311G (d,p), 6-311G* and 

aug-cc-pvdz basis sets are used for calculations. The ground state energy and band gap 

energy decrease with number of linear acene rings while the nuclear repulsion energy 

and Coulomb potential increase due to the accumulation of electrons in the bonding 

states. Additionally, π-bonding electrons increase the highest occupied molecular 

orbitals (HOMO) energy, and π*-antibonding electrons decrease the lowest occupied 

molecular orbitals (LUMO) energy with the increase of the acene rings. The π-bonding 

electrons cause the resonance by delocalization of electrons around the linear acenes 

molecular structures. It was found that the band gap energy, chemical potential, μ and 

global hardness, η decrease with the increase in the number of acene rings whereas the 

electronegativity χ, softness S and electrophilicity ω increase with the number of linear 

acene rings. The results show good agreement with theoretical and experimental values. 

In addition, HOMO and LUMO orbitals energy, ionisation energy, electron affinity and 

global indices reveal that higher linear acene rings and their derivatives exhibit excellent 

electronic and chemical properties. However, due to high values of HOMO orbitals 

energy and low values of LUMO energy lead to low ionisation potential and high 

electron affinity across the acene derivatives which demonstrate that the materials have 

more potential application in organic light emitting diodes (OLEDs) and organic field 

effect transistors (OFETs) than in optical application. 
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ABSTRAK 

Pemodelan molekular memainkan peranan yang penting dalam usaha mencari bahan 

elektronik organik yang baharu dan yang lebih baik serta mempunyai sifat elektronik dan 

kimia yang sangat baik bagi merekabentuk peranti elektronik organik. Dalam penyelidikan 

ini, kami telah mengkaji beberapa sifat elektronik, kimia dan kegetaran bagi asin lelurus 

(daripada benzin kepada heptasina), dan kesan tambahan halogen, sianat dan tiofen ke atas 

asin lelurus. Sifat molekular yang mungkin bagi asin lelurus dan terbitannya sebagai fungsi 

beberapa cantuman cincin benzin dan jumlah bilangan karbon turut dikaji. Pengiraan telah 

dilakukan menggunakan kod NWchem 6.3 dan Molden untuk pengambaran struktur 

molekular. Hartree-Fock (HF), Teori Kefungsian Ketumpatan (DFT) dan teori aras MØller-

Plesset (MP2) dengan fungsi penukaran B3LYP menggunakan set asas 6-311G, 6-

311G(d,p), 6-311G* dan aug-cc-pvdz telah diguna untuk pengiraan. Jumlah tenaga keadaan 

dasar dan jurang tenaga berkurangan dengan bilangan cincin asin lelurus, manakala tenaga 

tolakan nuklear, dan keupayaan Coulomb telah bertambah disebabkan oleh pengumpulan 

elektron dalam keadaan terikat. Sebagai tambahan, ikatan-π elektron meningkatkan tenaga 

penguasaan tenaga tertinggi orbital molekular (HOMO), dan antiikatan-π* mengurangkan 

penguasaan tenaga terendah orbital molekular (LUMO) seiring dengan peningkatan cincin 

asin. Ikatan-π elektron meningkatkan resonans melalui pemisahan elektron di sekeliling 

struktur molekul asin lelurus. Selain itu, turut ditemui, tenaga jurang jalur, keupayaan kimia, 

μ dan kekerasan global, η berkurangan seiring dengan pertambahan bilangan cincin asin 

manakala keeloktronegatifan, χ, kelembutan, S, dan elektrofilik, ω, bertambah dengan 

bilangan cincin asin. Keputusan ini telah menunjukkan terdapat kesamaan antara nilai teori 

dan eksperiment. Tambahan pula, tenaga-orbital HOMO dan LUMO, tenaga pengionan, 

afiniti elektron, dan indeks global telah mendedahkan bahawa cincin asin lelurus yang tinggi 

dan terbitannya memaparkan sifat elektronik dan kimia yang sangat baik. Walau 

bagaimanapun, disebabkan oleh nilai tenaga orbital HOMO yang tinggi terhadap nilai tenaga 

HOMO yang tinggi dan nilai tenaga LUMO yang rendah telah membawa kepada potensi 

pengionan yang rendah dan afiniti elektron yang tinggi merentasi terbitan asin menjadikan 

bahan tersebut lebih berpotensi digunakan dalam peranti organic light emitting diodes 

(OLEDs) dan organic field effect transistors (OFETs) berbanding peranti optik.  
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

The chapter gives an introduction to the organic semiconductor and their 

application in molecular and organic material, the background of the study, problem 

statement, objectives of the research, the scope of the study, the significance of the 

work as well as the thesis outline. 

1.2 Background of the Study 

Interest in -conjugate organic semiconductor materials has potentially 

increased over a decade in materials science as well as in chemistry and space 

physics. This is due to their promising advantages over a traditional inorganic 

material such as lower cost of production, light weight, flexibility (see Figure 1.1), 

large area of coverage such as in nanomaterials (Nicolas et al., 2012), low 

temperature and soluble-based processes (Fahem and Bauhofer, 2012), and 

promising mechanical properties (Cosseddu et al., 2013).  

The -conjugate organic materials also demonstrate significant important 

applications in organic light emitting diode (OLED), energy storage, photovoltaic 

cells, organic thin film transistors (OTFT), electrochromic devices, sensors (Ozen et 

al., 2011), electronic paper and flat panel liquid crystal displays (Ruiz et al., 2005) 
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and organic electrochemical transistor as biocompatible for brain-machine interface 

(Khodagholy et al., 2013), and their application in rechargeable Li-ion batteries 

(Firouzi and Zahedi, 2008). They are utilized in glassy carbon materials and 

graphene sheets (Hajgató et al., 2008). Also, Nall (2011) has described the most 

applicable areas of application of organic semiconductor materials such as; active-

matrix OLED, organic light emitting diode, organic field-effect transistor, organic 

solar cell and hybrid solar cell.  

In addition, low-cost ‘smart cards’, radio-frequency ID tags and printable 

transistors are under active investigation (Ruiz et al., 2005). Also, due to good 

quantum fluorescence efficiency and high mobility of hole transport, the acene 

derivatives are the most promising candidates for optoelectronic devices application; 

this includes organic light emitting diodes, organic field effect transistor and hole 

collectors in organic photovoltaic cells (Pan et al., 2008).  

 

 
Figure 1.1: Demonstration of a flexible OLED device 

 

(Source: solar.upstime.com/oled-power-new-screens-are-solar-panels)  
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However, organic semiconductor materials are divided into two broad 

groups: oligomers (small molecules); these are chemically or industrially treated in a 

vacuum, and the polymers, which are mainly treated by wet chemical techniques. 

The oligomers and co-oligomers have demonstrated some promising results over a 

polymer. Thus, they are easily soluble in organic solvents, distilled and formed a 

crystalline film. Oligomers and co-oligomers of thiophenes and acenes are essential 

molecules for OFETs device (Zhao et al., 2013). Also, some theoretical findings in 

the same study have shown that oligoacene of anthra [2, 3-c] thiophene and their 

cyanate derivatives manifested ultra-low hole reorganization energy which suggests 

oligoacene materials to be excellent candidates for p-type semiconductors. 

Consequently, organic semiconductor materials utilized molecular orbitals 

(MO) as the highest occupied molecular orbitals (HOMO) and lowest unoccupied 

molecular orbitals (LUMO); a probable electronic state of organic material. This is a 

transition state for π-electrons in organic molecules. The HOMO and LUMO orbitals 

energy of the organic semiconductor play an important role in determining the 

electronic and optical property of the π-conjugate organic materials (Sun, 2006).   

Also, another property that determines the material property is; ionization 

potential (IP) and the electron affinity (EA). The material with p-type or n-type 

organic material conduction; the ionization potential, IP and electron affinity, EA is 

mainly used to estimate the energy barrier for injection of holes and electrons, and to 

determine the efficiency of the material for molecular device design (El-Nahas et al., 

2012). However, for an efficient electron injection from standard metal electrodes, 

the minimum value of electron affinity (EA) should be 3.00 eV (Purushotham and 

Sastry 2013).  

 

 



4 
 

1.3 Problem Statement 

Research and Industrial applications show that oligomers of acenes, their 

derivatives, heterocyclic hydrocarbons and their polymers have been under intensive 

study over a decade, after the discovery of the first organic semiconductor material 

by Shirakawa (Shirakawa et al., 1977). In addition, prediction of a new material is 

now being employ via modelling and computational methods, which yields 

remarkable results where the experimental methods become difficult and expensive 

to carry out. 

However, there are many impending challenges regarding the development of 

an organic semiconductor material application with linear acenes. In general, Garzón 

et al. (2010) have observed the problems with the molecular design of organic 

semiconductor material that they have a poor concentration of electrons, scarcely 

soluble, which is difficult to process. Also, they are also unstable in air. In addition, 

 arc a et al. (2011) have reported that the luminescence, electroluminescence and 

electronic property of n-type organic material is affected when subjected to air, 

whereas the p-type organic material behave differently and show an increase in 

material conductivity with the air pressure.  

On the other hand, García et al. (2012) have reported in their study of poly 

(arylenethynyl-thienoacenes), a linear acenes derivative for optoelectronics devices 

that the main problems with ambipolar organic semiconductors is the intrinsic 

instability of radical ions in the air, and the high barrier for electron injection, which 

considered to be the work function used as noble metals. Also, a similar case related 

pentacene and other high linear acene molecules were reported by (Wang et al., 

2012).  

Further, (Shinamura et al., 2011) have demonstrated that pentacene is an ideal 

organic semiconductor material for organic field effect transistor (OFET), but high 

oxidation potential and chemical instability defined by the HOMO energy level 

makes the molecules susceptible to air oxidation. This is also a major setback for it 

further practical application. Similarly, Bunz (2015) has observed a similar case that 
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linear acenes with high ring such as hexacene and heptacene experienced insolubility 

and high reactivity, which make them difficult to process. 

However, many attempts have been made to overcome the above challenges 

in the design of an organic and molecular electronic device. The early report for an 

air-stable organic semiconductor was the used  of Bis (dithienobenzene), a benzene 

derivative with reasonable exhibited thin-film mobility of 0.04  (Wang et 

al., 2012). Also, Tang and Bao (2010) have reported that the used of halogen (such 

as fluorine, chlorine and bromine etc) in the acenes molecule could be the best 

method forward to overcome the instability in the air that is beneficiary toward a 

proper commercialization of organic semiconductor devices. Thus, the method 

resulting in production of n-type organic materials.  

Moreover, Katsuta et al. (2011) have reported another improvement for air 

stability organic semiconductor with tetracene and pentacene using cyanate for 

OFET performance; 5,12-dicynonaphathacene (DC-NAP) and 6,13-dicynopentacene 

(DC-PEN) material, a linear acene derivatives. The result demonstrated the 

improvement toward air stability of the molecules. In addition, the HOMO and 

LUMO level differences for DC-NAP and DC-PEN is 0.83 eV and 0.89 eV, and 4.0 

eV and 4.14 eV with the LUMO level similar to that of fullerene, C60 respectively. 

Due to anionic states and low LUMO level, both DC-NAP and DC-PEN behave as n-

type organic semiconductors. Pramanik and Miller (2012) have reported a different 

procedure for the synthesis of pentacene-based acenes with an effort to integrate 

pentacene to OLEDs and photovoltaic devices.  

Furthermore, Watanabe et al. (2013) have cited that other bulk materials are 

utilized to increase the charge and controlling stability of organic semiconductor 

materials such as arlthio, phenyl, alkylsilylethynyl and many others. Also, the 

replacement of hydrogen in carbon-hydrogen bond, -CH group in the acenes family 

(azaacenes) backbone with hetero atoms has additionally advanced the scientists to 

modify their properties. This has strongly transformed the frontier orbitals energy 

(FOE) structure of new organic molecular structures by their number, position, and 



6 
 

valencies toward the enhancement of molecular material design (Li and Zhang, 

2015).  

In addition, Zhang et al. (2013a) have reported that other parameters can be 

applied to evaluate properties related to molecular stability and the production of 

charges, such as ionization potential and electron affinity. It is shown that a molecule 

with higher ionization potential indicates a better stability of the material, whereas a 

smaller electron affinity reveals the large barrier for electron injection, which is also 

a remarkable way of manipulating the molecules to improve electronic efficiency.  

Also, with the exact or local density approximation (LDA), generalized 

gradient approximation (GGA) models, recently have provided good representation 

and physical meaning of the optical band gap  and frontier orbitals energy, 

which is usually determined by optical spectroscopy experimental (Baerends et al., 

2013)(Cardia et al., 2014; Autschbach and Srebro, 2014). 

Despite the fact, there many literature that have reported on the properties of 

linear acenes and their derivatives, and synthesis, but not all accounts for their 

chemical properties by quantum chemical indices. Also, in some studies, the ground 

state energy, electronic and vibrational properties of the linear acenes and their 

derivatives were not comprehensively studied.  

However, due to their significance in organic and molecular electronic 

materials, there is a need to further study their properties for the potential used in 

organic semiconductor materials design. Hence, in this research work, we will report 

and extend the study of electronic, chemical and vibrational properties of linear 

acenes, and to predict their derivatives based on the previous literature. Also, 

Hartree-Fock (HF) method, Density Functional Theory (DFT) with B3LYP exchange 

correlation and MP2 with a selected basis set will be used. This will be given a clear 

justification on the results in comparison to previous work. 
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1.4 Research Objectives 

The primary aim of the research is to investigate, calculate and predict 

through chemical physics study, the properties of linear acenes that have potential 

applications in molecular device design such as OFETs and OLEDs.  To accomplish 

the above aim the specific objectives are proposed as follows: 

  

1) To calculate the ground states energy and electronic properties of linear 

acenes (n = 1 to 7) compounds by linear combination atomic orbitals theory 

(LCAO) at HF, DFT-B3LYP and MP2 methods. Also to compute their 

excited electronic states using TDDFT.  

 

2) To compute the chemical properties using quantum chemical indices for the 

linear acenes that are useful to the design of OLEDs and OFETs materials. 

Some of the parameters include ionization energy (IE), electron affinity (EA), 

chemical potential (µ) and global hardness (ɳ) etc. 

 

3) To determine the vibrational properties of linear acenes relevant to the 

organic semiconductor materials application.  

 

4) To identify the above said properties for linear acene derivatives based on 

substitution of halogen, cyanate and thiophene-based. As the present method 

for enhancement of acenes properties use in molecular and organic electronic 

application. 

1.5 Scope of the Study 

In this research work, a linear combination atomic orbital (LCAO) method is 

adopted to calculate electron, chemical and vibrational properties of linear acenes (n 

= 1 to 7) and the prediction of their derivatives based on the addition of cyanate, 

halogen, and heterocyclic compounds. Energy minimization and structure 

optimization will be carried out with NWchem 6.3 code (Aprà et al., 2003; Valiev et 
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al., 2010) under the DFT theory at B3LYP exchange. The following approaches are 

adopted to calculate electronic, chemical and vibrational properties of linear acenes 

(n = 1 to 7) and their derivatives:  

 

 

(a) Atomic coordinates, ground state energy, Coulomb potential, nuclear repulsion 

energy and infrared vibrational frequency parameter can be calculated with the 

help of energy minimization procedure using Hartree-Fock and density 

functional theory (DFT) approximations. 

 

(b) Electronic properties such as HOMO energy, LUMO energy and band gap 

energy, and their excited state (S1) etc. can be computed using Hartree-Fock 

(HF), density functional theory (DFT), MP2 approximations, and time 

dependent density functional theory (TDDFT) with B3LYP exchange-

correlation.  

 

(c) Global quantum chemical indices like chemical potential (µ), electronegativity 

(χ), global hardness (ɳ), global softness (S), electrophilicity (ɷ), ionization 

potential (IP), and electron affinity (EA) can be utilized to predict and analyse 

the chemical stability of the molecular structures.  

 

(d) Vibrational property such as infrared spectra can be evaluated by using DFT 

approximation at B3LYP exchange.  

 

(e) To overcome the problem of convergence in optimization of the total ground 

state energy and electronic properties, different basis sets like 6-311G, 6-311G 

(d, p), 6-311G* etc. are used for accurate predictions. 
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1.6 Significances and Original Contribution of the Study 

The study of linear acenes (n = 1 to 7) properties; benzene, naphthalene, 

anthracene, tetracene, pentacene, hexacene, heptacene, and the prediction of their 

derivatives by first-principle calculations using LCAO method is an attempt to 

contribute to the existing knowledge on linear acenes electronic, chemical and 

vibrational properties. Also, the findings of this study would make a necessary 

recommendation that eventually lead to the potential application of the studied 

materials for the development of the molecular and organic electronic device design. 

The important achievements in the study are: 

(i) Hartree-Fock (HF), Density functional theory (DFT), (MP2) and CAM-

B3LYP with B3LYP exchange-correlation using LCAO method are utilized 

simultaneously to remove the discrepancy in the results associated with the 

properties of linear acenes (n = 1 to 7). 

 

(ii) The designated ranges of the molecular structures have never been part of any 

first-principle calculations until current study. Electronic, chemical, and 

vibrational parameters and prediction of new molecular derivatives of linear 

acenes are calculated and predicted first time. 

 

(iii)  The present research work proves that the addition of halogen, cyanate, and 

heterocyclic functional atoms or molecules to linear acenes molecular 

structures is a good method to increase and improve the stability, and 

electronic properties of the linear acenes.  

 

(iv)  Selected quantum chemical indices such as chemical potential (µ), 

electronegativity (χ), global hardness (ɳ), global softness (S), electrophilicity 

(ɷ), ionization potential (IP), and electron affinity (EA) are utilized for the 

first time to establish chemical instability of the linear acenes and their 

derivatives. The study has proven that the linear acenes; naphthalene to 

pentacene and their derivatives are useful for OLEDs and OFETs design. 
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(v) The frequencies vibrational spectra relevant to molecular absorption are also 

established and analysed first time for the linear acenes and some of their 

derivatives. Also, wavenumbers in the infrared regions of transmittance 

intensity are identified. 

1.7 Thesis Structure and Organization 

Chapter 1 captures the general introduction of the research work, which 

includes research background, research problems that need to be addressed in the 

work, objectives, and scope of the research, and as well as the importance of the 

study and the thesis structure organization.  

Also, Chapter 2 reviews the literature on polyacenes (linear acenes) and their 

derivatives, and also heterocyclic compounds. In addition, Chapter 3 discusses the 

methodology involved in the research work. Theoretical framework and the methods, 

as well as computational details of the research work, are given in chapter three. 

Chapter 4 discusses the results including, calculation of ground state energy 

(GSE), electronic properties, optical excitation, etc. Also, Chapter 5 discusses on 

chemical indices like; chemical potential (µ), electrophilic (ɷ), global hardness (ɳ), 

electronegativity (χ), global softness (S), and vibrational properties. Finally, Chapter 

6 summarizes and reported the conclusion of the research work. Also, research 

limitation, reference list, and appendices are listed in the chapter accordingly. 
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