PRESENTATION OF DISSERTATION/THESIS SHEDULING SYSTEM (PDTSS)

ARDAVAN ASHABI

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Software Engineering

> Advanced Informatics School (AIS) Universiti Teknologi Malaysia

> > JUNE, 2013

To my beloved family

ACKNOWLEDGEMENT

First and foremost, thanks Allah, the compassionate and the merciful, for providing me the opportunity and the ability to reach to this point.

From the first step of doing this project to its final stage, I owe an immense gratitude to Dr. Noor Azurati binti Ahmad for her kind information sharing and Ms. Yazriwati Yahya for her supports and advices. Then my special thanks to my parents for their constant encouragement and their invaluable companions. They are everything that one could want in parents.

I am also very grateful to my friends who helped me in this project, both on research and development.

To each of the above, I extend my deepest appreciation.

ABSTRACT

In this study we will concentrate on the presentation of scheduling problems in an attempt to develop a web-based, automatic presentation scheduling system which can be employed by Advanced Informatics School, Universiti teknologi Malaysia (UTM AIS). So far this matter has been carried out manually until UTM AIS. This occurs on the event that the presentation scheduling process that was being managed turns out to be rather difficult for administration. The presentation scheduling problem is related to the scheduling of number of presentations to the venues and the limited available timeslots and also allocating some examiners for every presentation while taking the need to satisfy a group of defined constraints into consideration. Furthermore, the aforementioned system enables the staff and personnel to email or print the scheduling timetable of presentation. Implementing this system in UTM AIS is influenced by a group of presentations, the overlapping of examiners has to be avoided and the presentations have to be distributed among the examiners equally and fairly also the examiners must have the minimum possible gap between the presentations which they attend in. Greedy algorithm has been employed in this report. The software development model employed for the structuring and controlling of the developmental procedure of dissertation/thesis scheduling system's presentation is incremental development model. The system will be implemented by C# programming language. The software documentations which were conducted in accordance with DoD-2167A standards in this study consist of Software Development Plan (SDP), Interface Requirements Specification (IRS), Software Requirements Specification (SRS) and system Design Description (SDD).

ABSTRAK

Dalam kajian ini, kita akan menumpukan kepada pembentangan masalah penjadualan dalam usaha untuk membangunkan berasaskan web, persembahan automatik sistem penjadualan yang boleh digunakan oleh Advanced Informatics School, Universiti Teknologi Malaysia (UTM AIS). Perkara ini telah dilakukan secara manual pada masa lalu sehingga UTM AIS telah merancang untuk mendaftar lebih ramai pelajar kerana mereka akan menyediakan program-program baru dalam masa terdekat. Ini berlaku pada keadaan di mana proses penjadualan persembahan yang diuruskan ternyata menjadi agak sukar untuk pentadbiran. Masalah penjadualan pembentangan adalah berkaitan dengan penjadualan beberapa pembentangan kepada tempat-tempat dan timeslots terhad dan juga memperuntukkan beberapa pemeriksa bagi setiap persembahan semasa mengambil keperluan untuk memenuhi sekumpulan kekangan ditakrifkan kira. Tambahan pula, sistem yang dinyatakan di atas membolehkan kakitangan dan kakitangan untuk e-mel atau mencetak jadual jadual persembahan. Melaksanakan sistem ini di UTM AIS dipengaruhi oleh sekumpulan persembahan, bertindih pemeriksa perlu dielakkan dan persembahan perlu diagihkan di kalangan pemeriksa sama dan adil juga pemeriksa mesti mempunyai jurang mungkin minimum antara persembahan yang mereka menghadiri masuk algoritma tamak telah digunakan dalam laporan ini. Model pembangunan perisian digunakan untuk penstrukturan dan mengawal prosedur pembangunan persembahan disertasi / tesis sistem penjadualan adalah model pembangunan tambahan. Sistem ini akan dilaksanakan oleh C # bahasa pengaturcaraan. Dokumentasi perisian yang telah dijalankan selaras dengan piawaian DOD-2167A dalam kajian ini terdiri daripada Rancangan Pembangunan Perisian (SDP), Muka Keperluan Spesifikasi (IRS), Software Keperluan Spesifikasi (SRS) dan sistem Design Penerangan (SDD).

TABLE OF CONTENTS

СНАРТЕ	ER TITLE	PAGE
	ACKNOWLEDGEMENT	IV
	ABSTRACT	V
	ABSTRAK	VI
	TABLE OF CONTENTS	VII
	LIST OF TABLES	X
LIST OF FIGURES		XI
	LIST OF APPENDICES	XIII
1	PROJECT OVERVIEW	1
	1.1. Introduction	1
	1.2. Company Background	1
	1.3. Background of Problem	2
	1.4. Project Objectives	3
	1.5. Project Scope	3
	1.6. Importance of the project	4
	1.7. Deliverables of the Project	5
	1.8. Project schedule	7
	1.9. Chapter summary	7

2 LITERATURE REVIEW				
	2.1. Introduction	9		
	2.1.1. Introduction of Scheduling	10		
	2.1.2. Scheduling in Sectors	10		
	2.2. Presentation scheduling system	16		
	2.2.1. System Requirements	16		
	2.3. Algorithms	19		
	2.3.1. Greedy algorithm	19		
	2.3.2. Graph coloring algorithm	21		
	2.3.3. Genetic algorithm	21		
	2.3.4. Tabu search	23		
	2.4. Software development model	24		
	2.4.1. Iterative development model	25		
	2.4.2. Incremental development model	25		
	2.4.3. Iterative and Incremental model	26		
	2.4.4. Agile model	27		
	2.4.5. Waterfall model	28		
	2.4.6. V-model	30		
	2.4.7. Spiral model	31		
	2.4.8. Overview of mentioned development models	33		
	2.5. Chapter Summary	40		
3	PROJECT METHODOLOGY	40		
	3.1. Introduction	40		
	3.2. Project Methodology	41		
	3.2.1. Acquisition of Requirement Phase	42		

viii

	3.2.2. Analysis and Design Phase	43
	3.2.3. Development Phase	45
	3.2.4. Software Documentation Phase	47
	3.3. Software Tools	48
	3.4. Summary	49
4	IMPLEMENTATION AND RESULT	50
	4.1. System design overview	50
	4.2. System design overview	51
	4.2.1.External Interface diagram	51
	4.2.2.Use Case Diagram	52
	4.3. Implementation Phase	53
	4.3.1. The iterative and incremental	54
	4.3.2. Analysis of greedy algorithm in solving resen	tation
	Scheduling Problem	55
	4.3.3. Implementation of Data Base	57
	4.4. Output and result	61
	4.4.1. Interfaces	61
5	CONCLUSION	73
	5.1. Introduction	73
	5.2. Lesson learnt	73
	5.3. Conclusion	74
	5.4. Challenges	75
	5.5. Recommendations	76
REFERE	NCES	78

LIST OF TABLES

TABLE NO.	TITLE	PAGE
Table 1.1	Project Schedule	7
Table 2.1	Overview of development models	33
Table 3.1	Methodology Procedures Framework Description	42
Table 3.2	Software development techniques and methodologies	42
Table 3.3	Software tools	42

LIST OF FIGURES

FIGURE NO.	IGURE NO. TITLE	
Figure 1.1	Software Development Files	5
Figure 2.1	Iterative Development Model	25
Figure 2.2	Iterative and Incremental Model	۲۷
Figure 2.3	Agile development model	۲۸
Figure 2.4	Waterfall development model	29
Figure 2.5	V-model	30
Figure 2.6	Spiral Model	31
Figure 3.1	Methodology Procedure Framework	41
Figure 3.2	PDTSS Software Development	49
Figure 4.1	PDTSS External Interface Diagram	51
Figure 4.2	PDTSS requirement (Use Case Model)	52
Figure 4.3	Incremental development	54
Figure 4.4	Login Table	56
Figure 4.5	Batch Body Table	57
Figure 4.6	Batch Header Table	57
Figure 4.7	Student Table	58
Figure 4.8	Examiner Table	58

Figure 4.9	Venue Table	59
Figure 4.10	Event Setting Table	59
Figure 4.11	Login Screen	60
Figure 4.12	Main Menu Screen	61
Figure 4.13	Import Data Excel File Screen	62
Figure 4.14	Student Screen	63
Figure 4.15	Examiner Screen	64
Figure 4.16	Venue Screen	65
Figure 4.17	Time Setting Screen	66
Figure 4.18	Generate Schedule Screen	67
Figure 4.19	Schedule Screen	68
Figure 4.20	Export the Schedule	69
Figure 4.21	Print Preview Screen	70
Figure 4.22	Exported Excel file	71
Figure 4.23	Email message Screen	72

LIST OF APPENDICES

APPENDIX

TITLE

A	Software Development Plan (SDP)
В	Software Requirements Specification (SRS)
С	Interface Requirements Specification (IRS)
D	Software Design Document (SDD)
Е	PDTSS Gantt chart

CHAPTER 1

PROJECT OVERVIEW

1.1. Introduction

The purpose of this chapter is providing general explanation about the Presentation of Dissertation/Thesis Scheduling System (PDTSS). Being in UTM AIS, international campus, the reader with an overview of report in an industrial attachment will be provided in this chapter. What will be discussed in this chapter is a background of UTM AIS' scope and objectives of the working projects.

1.2. Company Background

Advanced Informatics School (AIS) has been known as only center of excellence in Universiti Teknologi Malaysia (UTM) to focus on the Computer Science especially in Software Engineering and Information Security. Furthermore, AIS offers full time and part time postgraduate programs to local and international students. Programs which offered by AIS are as follows:

- PHD of Computer Science
- Doctor of Software Engineering
- Doctor of Philosophy
- Master of Computer Science
- Master of Software Engineering
- Master of Computer Science (Information Security)
- Master of Science (Information Assurance)
- Master of Science (Computer Systems Engineering)
- Master of Science (IT-Management)
- Master of Philosophy

AIS, has vision to become a global referred center in informatics solutions and the services and is committed to improve the development of human capital in informatics. (www.ais.utm.my)

1.3. Background of Problem

Creating a presentation of thesis or dissertations that is timetable for every program that was mentioned before is without a doubt a demanding and challenging process. Therefore, this document will study the presentation of dissertation/thesis scheduling problems occurred in AIS.

It is important to mention and to note that no presentation of dissertation/thesis scheduling systems has been developed in AIS up to now. Before, all were done manually and it was possible because of small number of students in AIS. The schedule of some examiners might be overloaded while there may be examiners whose schedule is less loaded and are assigned fewer presentations because there is a chance that the dispatch of presentations has not been fair. Furthermore, the time and venue of the presentations may conflict. Nonetheless, introducing more programs, AIS has decided to admit more and more students.

1.4. Project Objectives

The main objectives of this project are:

• To study the existing presentation of dissertation/thesis scheduling systems and also the algorithms of similar to presentation of dissertation/thesis scheduling system in other universities

• To develop a presentation of dissertation/thesis scheduling system, which using incremental software development model; this system suits UTM AIS presentation of dissertation/thesis scheduling requirements.

• To deliver the related software engineering document, which are the SDP, SRS, IRS and SDD.

1.5. Project Scope

UTM AIS needs a timetable for presentation of dissertation/thesis for every semester, considering all programs. Henceforth, a study was obliged to take place in order to question the upcoming related problems for preparing this timetable manually and also the requirements in the procedure of automatic presentation of dissertation/thesis scheduling system and developing this system that can alleviate the staff of AIS, who are in charge of preparing the schedule for presentation of dissertation/thesis. The aim of this study is providing solutions to solve the occurring problems during the preparation of presentation of dissertation/thesis schedule manually; some such as any probable conflict and mistakes in examiners, time, venue for each per session.

The scope of this study is to implement a web-based Presentation of Dissertation/thesis Scheduling System (PDTSS) application for UTM AIS.

1.6. Importance of the project

To maximize the efficiency of this presentation of dissertation/thesis management process and to minimize the time of creating the presentation of dissertation/thesis schedule depended on AIS' need of having a reliable and effective presentation of dissertation/thesis scheduling system.

The result of this study is a system which can provide a solution in accelerating the process of generating the presentation of dissertation/thesis schedule.

The main assistance of this system is in helping to ignore any possible mistake or conflict like the attributing of venue or scheduling of an examiner to more than one session simultaneously. Furthermore the presentations will be distributed between examiners fairly and also examiners will have the minimum possible time gap between their presentations. Moreover, it is helpful in integrating the data related to presentation of dissertation/thesis schedule, circulating the presentation's information rapidly and efficiently.

1.7. Deliverables of the Project

The figure 1.1 shows all deliverables (documents and source code) which must be delivered for this project.

Figure 1.1: Software Development Files

• Software development plan (SDP):

The software development approach, procedures, methodologies as well as the tools that are going to be used during the software's analysis, design, development, integration and maintenance are going to be established in this document. In this document, the overall plan that is going to be employed and applied in the development of the project is going to be described. Every project management activity is going to be executed in accordance with the Software Development Plan.

• Software Requirements Specification (SRS):

This document is a thorough description of the behavior of the system that is being developed. A group of use cases are included in the SRS document that provides an explanation about the interactions every user is going to have with the system. It is employed in determining the basis of agreement between the developers and customers in regards with the system functionality.

• Interface Requirements Specification (IRS):

The Interface Requirements Specification (IRS) identifies and clearly describes the requirements forced on the system. IRS document can be employed as the basis for the system's qualification testing as well as the design of SRS document.

• Software Development Design (SDD):

This document can be described as a software product's written description; providing an explanation or a description of the way the requirements and demands specified within the specification document is executed.

• Source Code:

Source code is the text that the programmer writes employing the syntax and format of the programming language. The listing of the source code employed in generating automatic presentation scheduling should be burned into a CD by the author and pasted at the hard cover at the back of the thesis.

• Execute:

Execute file refers to a file with a format that allows the computer to directly accomplish the stated tasks in accordance with the encoded instruction. In C# language, executable files have .exe extension and called EXE files.

1.8. Project schedule

Software development activities and the time it is assigned to, is under the magnifier of this chapter. We employ project scheduling plan so as to accomplish per activity in the project in a specific time.

What project scheduling plan does, is to work as a guideline for estimating the management of the project development in time. Every single phase has to be completed in its own specific time as mentioned in the schedule. The following table 1.1 demonstrates the "Presentation of Dissertation/Thesis Schedule System" project's activities:

Activity No.	Activity	Duration
1	Software Development Plan	14 Days
2	The Specification Phases	22 Days
3	The Preliminary Design Phase	14 Days
4	Coding and Unit Testing Phase	14 Days
5	Integration and testing Phase	7 Days
6	The Research Methodology	29 Days

Table 1.1: Project Schedule	Fable	e 1.1:]	Proj	ect S	Sc	hed	lule	e
-----------------------------	-------	-----------------	------	-------	----	-----	------	---

1.9. Chapter summary

This chapter provides general explanation about the Presentation of Dissertation/Thesis Scheduling System (PDTSS). Being in UTM AIS, international campus, the reader with an overview of report in an industrial attachment will be provided in this chapter as well.

This study discusses about the scheduling algorithms and systems in different areas, but the main focus of this study will be on the presentation scheduling algorithms and systems. This study bearing five chapters; Chapter 1 presents a short description of the presentation of dissertation/thesis scheduling system was given. Chapter 2 encompasses the literature review which focuses on previous studies as well as the existing gap in the studied area. Chapter 3 discuss about confront the project's methodology and the demanding instruments applied in this report. Chapter 4 presents the developed system and some other variables like software engineering documents. And chapter 5 will be the conclusion.

REFERENCES

Abdoullah S. and Turabieh, H. (2008). Generating University Course Scheduling timetable using Genetic Algorithms and local search. 3rd International conference on convergence and hybrid information technology ICCIT. Volume 1, page 25.

Ahuja, R. K., Orlin, J. B. and Tiwari, A. (2000). A greedy genetic algorithm for the quadratic assignment problem. Computers and operations research 27,917-934.

Ali Munassar, N. M. (2010). Comparison between Five Models of Software Engineering. IJCSI international Journal of Computer Science Issues. VOI. 7. Issues 5. ISSN(online): 1694-0814.

Ayob, M. and Ghaith, M. J. and Hamdan A. R. Hafiz, M. S. and Nazri M. Z. A. (2011). Solving the viva presentations timetabling problem: A case study as FTSM-UKM. International conference on electrical engineering and information. Bandung, Indonesia.

Anson, S. and Lester, S. (2007). Sports Scheduling: Algorithms and Applications. Sports Scheduling Project.

Beck, K. (2001). Manifesto for Agile Software Development. Agile Alliance. Retrieved 14 June 2010

Benington, H. D. (1983). Production of Large Computer Programs. IEEE Annals of the History of Computing. Retrieved 21 March 2011.

Boehm, B. (1986). A Spiral Model of Software Development and Enhancement. ACMSIGSOFT Software Engineering Notes, ACM, 11(4):14-24.

Boland, N. and Hughes, B. D. and Hughes, L. T.G. and Merlot, P. and Stuckey, J. (2008). New integer programming approaches for course timetabling. The Journal of computer and operations research, vol. 35, No. 7. 2209-2233.

Burke, E., Eliiman D., Ford P. and Weare R. (1996). Examination timetabling in British universities – A Survey. The Practice and Theory of Automated Timetabling. Literature note in Computer Science.

Burke, E. and Petrovic, S. (2002). Recent research direction In Automated time tabling. European journal of operational research – EJOR 140(2). 266-280.

Carter, M. W. (1986). A survey of Practical applications of examinations timetabling Algorithms. Operations Research 34 193-202.

Cauvery, N. K. (2011). Timetable Scheduling using Graph Coloring. International Journal of P2P Network Trends and Technology- Volume1Issue2.

Centers for Medicare & Medicaid Services Office of Information Service (2008). Selecting a development approach. Webarticle. United States Department of Health and Human Services.

Cormen, T. (2003). Introduction to Algorithms (2nd edition). ISBN-13: 978-0072970548.

Corne, D. and Feng, H. L. and Mellish, C. (1993). Solving the module exam scheduling problem with Genetics Algorithm. Proceedings of the 6th International conference in industrial and engineering application of artificial intelligence and expert systems. Gordon and Breach Publishers, 370-373.

Department of defense (1985). DOD-STD-2167A: Military Standard. Department of defiance (Navy). United states of America.

Dowsland K. A. and Thompson, J. M. (2000). Nurse Scheduling with Knapsacks, Networks and Tabu Search. Journal of the Operational Research Society. 825-833.

Elliott, G. (2004) Global Business Information Technology: an integrated systems approach. Pearson Education. p.87.

Fielding, R. T. (2000). Software Architectural Styles for Network Based Applications. University of California, IRVINE. United States of America.

Ghaemi, S. and Vakili, M.T.and Aghagolzadeh, A. (2007). Using a genetic algorithm optimizer tool to solve university timetable scheduling problem. Signal processing and its Applications, 2007. ISSPA 2007. 9th International Symposium on. IEEE

Glover, F. and Laguna, M. (1997). Tabu search. Boston, MA: Academic publisher

Hamiez, J. P. and Hao, J. K. (2001). Solving the Sports League Scheduling Problem with Tabu Search. Local Search for Planning and Scheduling Lecture Notes in Computer Science Volume 2148, 2001, pp 24-36.

Hentenryck, P. V. and Vergados, Y. (2004). Minimizing Breaks in Sport Scheduling with Local Search. Brown University.

Jan, A. and Yamamoto, M. and Ohuchi, A. (2000). Evolutionary Algorithms for Nurse Scheduling Problem. Evolutionary Computation, 2000. Proceedings of the 2000 Congress on. IEEE.

Karger, D. (1997). Scheduling algorithms. Massachusetts Institute of Technology (MIT). United States of America.

Khan, M. B. and Zhang, D. and Jun, M. S. and Li, Z. J. (2006). An Intelligent Search Technique to Train Scheduling Problem Based on Genetic Algorithm. IEEE—ICET 2006 2nd International Conference on Emerging Technologies Peshawar. Pakistan.

Larman, C. (2003). Iterative and Incremental Development: A Brief History. Computer 36 (6): 47–56

Li, Y., Padalos, P. M. (1994). A greedy randomized adaptive search procedure for the quadratic assignment problem. Theoretical computer science American Mathematical Society.

Marin H. (1998). Combination of CSP and GAs strategies for solving the timetabling problem. Master's thesis. Department of AI, University of Edinburgh.

Moghasemi, H. (2010). Designing algorithms. ISBN: 978-964-490-238-3.

Mushtaha, A. and Tolba, R. (2008). Integrating V-model into the web development process. International Arab Conference on e-Technology - IACeT, Amman, Jordan.

Naderuzzaman, M. (2011). An Improved & Adaptive Software Development Methodology. Computer Engineering and Intelligent Systems. ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) Vol 2, No.3.

Najafabadi, M. (2011). Exam Scheduling system, Master Thesis. UTM. Malaysia.

NASA. (2004). NASA Software Safety Guidebook. NASA-GB-8719.13. 56-57.

Pinedo, M. (2002). Scheduling theory, algorithms and systems. 2nd Edition. New Jersey, United states of America. ISBN 0-13-028138-7.

Rabbi, F and A, Beg. (2011). An Improved & Adaptive Software Development Methodology. Computer Engineering and Intelligent Systems. ISSN 2222-1719. Vol 2, No.3.

Riberio, C. C. (2011). Sports and scheduling: Problems and Applications. International Federation of Operational Research Societies.

Sahin, I. (1999). Railway traffic control and train scheduling based on intertrain conflict management. Transportation Research B 33, 511–534.

Santos, H. and Ochi, I. and Souza M. J. F. (2004). A Tabu search heuristic with efficient diversification strategies for the class/teacher timetabling problem. In

proceedings of the 5th international conference on the practice of automated timetabling.

Schearf, A. (1999) A survey of automated timetabling, Dipartimento di Ingegneria Elettria Gestionale e Meccanica, Universitá di Udine, Via delle Scienze 208, 33100 Udine, Italy

Schmidt, K. (2001). Using Tabu search to solve the job scheduling problem with sequence dependent setup times. Master's thesis. Department of Computer Science, Brown University, United States of America.

Sommervile, I. (2010). Software engineering (9th edition). ISBN 978-0137035151.

Wan, Y. and Baharudin, N. (2001) interview with manager and system analyst, Examination Unit. Center for integrated information system, University Technology Mara. Malaysia.

Welsh, D. J. and Powell M. B. (1967). An upper bound for the chromatic number of a graph and its application to time tabling problem, The computer journal 10 85-86.