ESTIMATION OF BASE CAPACITY FOR BORED PILE EMBEDDED IN HARD STRATUM

ANUM SYAHIRAH BINTI AHMAD MAZLAN

UNIVERSITI TEKNOLOGI MALAYSIA

ESTIMATION OF BASE CAPACITY FOR BORED PILE EMBEDDED IN HARD STRATUM

ANUM SYAHIRAH BINTI AHMAD MAZLAN

A project report submitted in partial fulfilment of the requirements for the award degree of Master of Engineering (Civil-Geotechnics)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > DECEMBER 2015

Dedicated to my family & friends,

ACKNOWLEDGEMENT

First and foremost, I would like to express my gratitude to Allah the Almighty for His guidance and help in giving me the strengths to complete this report. I would like to express my deepest appreciation to my advisor Dr. Ramli bin Nazir for the shared expertise and the unwavering guidance. I would like to thank you for your encouragement, knowledge, motivation, patience and time in helping me along the preparations of this report.

I would also like to thank LMP Geotechnics Sdn Bhd especially Ms Nur Hafizah binti Bakar for allowing me to make benefit of the available data as part of my project.

Special thanks to my family who never fails to encourage me to never give up. Nothing in this world can substitute your love and faith towards me. Your prayers for me was what sustained me this far. I would also like to thank all of my friends who supported me directly and indirectly throughout this journey. Last but not least, deepest thanks go to all peoples who took part in helping me to complete this project report.

ABSTRACT

Based on current design practice, the base resistance of a pile often ignored which results to inadequate pile load design. Besides mobilising factor, the ignorance of base resistance may be due to uncertainties in effective cleaning of the boreholes. This paper represents determination of base capacity for bored pile towards hard stratum. Empirical equations and reviews related to ultimate base resistance from Standard Penetration Test (SPT) data results obtained from site investigation (SI). Results from several analysis have been evaluated by taking account of overburden pressure in the order to prove the existence of base capacity for bored pile at site. Aspect of construction for bored pile in hard stratum also presented together as it related to important matters towards base capacity and performance of the bored pile itself. Based on the result obtained, method by Meyerhof (1976) gives the best prediction of base capacity for hard stratum in Malaysia as the existance of base capacity itself cannot be ignored to get an adequate bore pile load design.

ABSTRAK

Berdasarkan amalan reka bentuk arus, rintangan asas cerucuk yang sering diabaikan yang menyebabkan kepada kekurangan reka bentuk beban cerucuk. Selain menggerakkan faktor, kejahilan rintangan asas mungkin disebabkan oleh ketidaktentuan dalam pembersihan berkesan lubang gerudi. Kertas kerja ini mewakili penentuan keupayaan asas untuk cerucuk bosan terhadap lapisan keras. Persamaan empirikal dan ulasan yang berkaitan dengan rintangan asas utama dari Ujian Penusukan Piawai (SPT) Keputusan data yang diperoleh daripada penyiasatan tapak (SI). Keputusan dari beberapa analisis telah dinilai dengan mengambil kira tekanan tanggungan dalam perintah itu untuk membuktikan kewujudan kapasiti asas untuk cerucuk bosan di tapak. Aspek pembinaan cerucuk bosan dalam lapisan keras juga dibentangkan bersama-sama kerana ia berkaitan dengan perkara-perkara yang penting ke arah keupayaan asas dan prestasi cerucuk bosan sendiri. Berdasarkan keputusan yang diperolehi, kaedah oleh Meyerhof (1976) memberi ramalan yang terbaik keupayaan asas untuk lapisan keras di Malaysia kerana wujudnya kapasiti asas itu sendiri tidak boleh diabaikan untuk mendapatkan lubang cerucuk reka bentuk beban yang mencukupi.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENTS	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xi
	LIST OF FIGURES	xii
	LIST OF SYMBOLS	xiv

1 INTRODUCTION

1.1	Background	1
1.2	Significance of Study	3
1.3	Objectives of the Study	4
1.4	Scope of the Study	4

2 LITERATURE REVIEW

2.1	Introd	luction	6
2.2	Туре	of Pile	8
	2.2.1	Mechanism of Load Transfer	8

		2.2.1.1	End Bearing Pile	8
		2.2.1.2	Friction Pile	9
		2.2.1.3	Friction cum End Bearing Pile	10
	2.2.2	Method	of Installation	10
		2.2.2.1	Driven or Displacement Piles	10
		2.2.2.2	Replacement or Non-	11
		d	isplacement Piles	
	2.2.3	Type of	Materials	13
		2.2.3.1	Timber Piles	13
		2.2.3.2	Steel Piles	15
		2.2.3.3	Concrete Piles	16
		2.2.3.4	Composite Piles	17
2.3	Bored	l Pile		18
	2.3.1	Constru	ction Procedures	19
		2.3.1.1	Dry Method	19
		2.3.1.2	Casing Method	20
		2.3.1.3	Slurry Method/Wet Method	23
2.4	Geoteo	chnical C	apacity of Bored Pile	25
	2.4.1	Factor of	of Safety	25
	2.4.2	Design	of Geotechnical Capacity in Soil	26
		2.4.2.1	Semi-empirical Method	26
		2.4.2.2	Simplified Soil Mechanics Method	28
2.5	Previo	us Study	on the Accountability of End	31
	Bearing	g Resista	nce	
2.6	In-situ	Test		32
	2.6.1	Standar	d Penetration Test	33
		2.6.1.1	Test Procedure	34

2.4

2.5

2.6

2.7	Correlation Studies Related to Standard	37
	Penetration Test	
2.8	Consideration of Base Capacity from	39
	Construction of Bored Pile	

3 METHODOLOGY

3.1	Introduction	40
3.2	Data Collection	42
3.3	Compilation of Data	45
3.4	Data Analysis	50
3.5	Comparison of Results	51
3.6	Summary	51

4	RESULTS AND DISCUSSION	
	4.1 Introduction	n

4.2	Insitu	Programme	53
	4.2.1	Standard Penetration Test Result and	54
		Interpretation	

5 CONCLUSION AND RECOMMENDATIONS

5.1	Conclusion	58
5.2	Recommendations	59

REFERENCES	61
APPENDIX	63

53

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	In situ Testings	33
3.1	Standard Penetration Test (SPT) Result from	46
	Borehole No. P289	
3.2	Standard Penetration Test (SPT) Result from	47
	Borehole No. P322	
3.3	Standard Penetration Test (SPT) Result from	48
	Borehole No. STN10-BH1	
3.4	Standard Penetration Test (SPT) Result from	49
	Borehole No. STN10-BH2	
3.5	Formulas Used for the Analysis	50
4.1	SPT N value at Base for Different Boreholes	55
4.2	Summary of Predicted Base Capacity for Borehole	55
	No. P289	
4.3	Summary of Predicted Base Capacity for Borehole	55
	No. P322	
4.4	Summary of Predicted Base Capacity for Borehole	56
	No. STN10-BH1	
4.5	Summary of Predicted Base Capacity for Borehole	56
	No. STN10-BH2	

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

1.1	Bored Pile	2
1.2	Bored Pile Construction Stage	3
2.1	Pile Types	7
2.2	Driven Pile	11
2.3	Major Procedures for Constructing Large Diameter	13
	Bored Pile	
2.4	Timber Piles	14
2.5	Steel Piles	16
2.6	Composite Piles	18
2.7	Dry Method of Bored Pile Construction	20
2.8	Casing Method of Bored Pile Construction	22
2.9	Slurry Method of Bored Pile Construction	24
2.10	Standard Penetration Test (SPT) Procedures	35
3.1	Methodology Framework of The Study	41
3.2	Sample of Standard Penetration Test Data Result	44
4.1	Split-Barrel Sampler	54
4.2	Base Capacity, Qb in kN versus Borehole No.	57
4.3	Base Capacity, Qb in Percentage versus Borehole	57
	No.	

LIST OF SYMBOLS

Q_{ag}	-	Allowable geotechnical capacity
Q_{su}	-	Ultimate shaft capacity
Q_{bu}	-	Ultimate base capacity
\mathbf{f}_{su}	-	Unit shaft resistance for each layer
\mathbf{f}_{bu}	-	Unit base resistance for the bearing layer
As	-	Pile shaft area
A_b	-	Pile base area
F_s	-	Partial Factor of Safety for Shaft Resistance
F_{b}	-	Partial Factor of Safety for Base Resistance
F_{g}	-	Global Factor of Safety for Total Resistance
K_{su}	-	Ultimate unit shaft resistance of soil
K_{bu}	-	Ultimate unit bearing resistance of soil
α	-	Adhesion factor
Su	-	Undrained shear strength
Kse	-	Effective stress shaft resistance factor
$\sigma_{\rm v}$	-	Vertical effective stress
φ'	-	Effective angle of friction (degree) of soils
N_c	-	Bearing capacity factor
N_{γ}	-	Bearing capacity factor
$\mathbf{N}_{\mathbf{q}}$	-	Bearing capacity factor
В	-	Pile diameter
D	-	Depth of pile base
β	-	Shaft resistance factor for coarse grained soils
qb	-	End bearing capacity

CHAPTER 1

INTRODUCTION

1.1 Background

Shallow foundation are normally used where the soil close to the ground surface and up to the zone of significant stress possesses sufficient bearing strength to carry the superstructure load without causing distress to the superstructure due to settlement. However, where the top soil is either loose or soft or of a swelling type the load from the structure has to be transferred to deeper firm strata. The structural loads may be transferred to deeper firm strata by means of piles.

Piles are long slender columns either driven, bored or cast-in-situ. Driven piles are made of variety of materials such as concrete, steel, timber or else whereas cast-in-situ piles are concrete piles. They may be subjected to vertical or lateral loads or a combination of vertical and lateral loads. If the diameter of a bored cast-insitu pile is greater than about 0.75m, it is sometimes called a drilled pier, drilled caisson or drilled shaft. The distinction made between a small diameter bored castin-situ pile and a larger one is just for the sake of design consideration. Usually, pile foundation (or deep foundation) used when rock level are shallow enough for end bearing pile, lateral forces are relatively prominent, and the presence of expansive and collapsible soils at site. This type of foundation may also be founded at offshore areas which near the flowing water to avoid the problem due to erosion.

Bored pile (Figure 1.1) are commonly used in Malaysia as foundation to support heavily loaded structures such as high-rise building and bridges in view of its low noise, low vibration, and flexibility of sizes to suit different loading conditions and subsoil conditions. Such attributes are specially favoured in urban areas where strict restrictions with regards to noise and vibration are imposed by relevant authorities which restricted the use of other conventional piling system such as driven piles.

Figure 1.1 : Bored Pile

The end bearing resistance is often ignored in current design practice in Malaysia due to difficulty in obtaining proper and consistent base cleaning during construction of bored piles (Figure 1.2). Neglecting the end bearing resistance in design will result in inadequate pile load design. Crapps and Schmertmann (2002) suggested that accounting for end bearing resistance in design and using appropriate construction and inspection techniques to ensure quality of base cleaning is a better approach than neglecting end-bearing resistance.

Figure 1.2 : Bored Pile Construction Stage

In most scenarios, base capacity of bored pile is usually being ignored due to uncertainties in effective cleaning of the boreholes. Unless for the case of dry hole and inspection of the base is possible, then base capacity can be considered with appropriate mobilising factor. In addition, base capacity concerns related to hand dug caisson. However, to determine an effective design of bored pile, base capacity must take into consideration.

1.2 Significance of Study

A few methods have been proposed for predicting the bearing resistance of bored piles. Of these different methods, empirical and semi-empirical relations have been used most widely. The method used by previous literature correlates the base resistance with respect to the consideration of it without ignoring the existence. However, there is still no such study conducted in Malaysia. It is uncertain how many percentage of base capacity included in a bore pile load design which may be applicable for the current industry in Malaysia.

The significance of this study is to ensure the correlations by previous study adopted for design of end bearing resistance are satisfactory and in order to be implemented in Malaysia. This study will also provides better understanding towards consideration of base capacity in the design stage of a bored pile.

1.3 Objective of the Study

The aim of this study is to identify the consideration of base capacity towards bored pile. With the deal of base capacity, it is hope that the proper and economical design for bored pile can be carried out. Besides, the method of installation for bored pile also can be revised.

Other related objectives are as follows:

- a. To analyze base capacity for bored pile embedded in hard stratum
- b. To identify the percentage of base capacity for an adequate design of bored pile.
- c. To compare the ultimate capacity of bored pile by the concern of base capacity.

1.4 Scope of the Study

The scope of works of this study includes some literature reviews on the relevant subject, data collections of insitu test and preliminary site investigation, and

analysis of base capacity for bored pile. The scope covers topics on bored pile, determination of its base capacity from Standard Penetration Test (SPT) N-value, and semi empirical calculations to get the reaction of bored pile towards hard stratum.

The scope does not cover the skin resistance, negative skin friction, and other types of deep foundation. The analysis used for determining base capacity is by using semi empirical equations. A site investigation report which contains factual sub-surface information and laboratory test results used for this study.

capacity itself towards total ultimate load of bored pile. The following recommendations are proposed for further studies:

- More Standard Penetration Test (SPT) results are needed for this study to validate the design approaches which may suits to be adopted for bored pile design.
- The other soil investigation works such as pile load test need to be considered to recognize the best method in order to get an adequate bored pile design.

REFERENCES

- Bandini P. and Salgado R. (1998), "Methods of pile design based on CPT and SPT results", Proc. 1st Int Conf. on Site Characterization, Atlanta
- Chang, M.F. & Broms, B.B (1991), Design of Bored Piles in Residual Soil based on Field Performance Data, Canadian Geotechnical Journal, Vol.28, pp. 200-209.
- Chin, T. Y, & Meng, C. C. (2003) Pile foundation Design and Construction Practice: A Malaysian Consultants Perspective, G&P Geotechnics Sdn Bhd Publishers.
- Chin, T. Y, & Meng, C. C. (2003) Design and construction of bored pile foundation. Geotechnical Course for Pile Foundation Design & Construction, Ipoh
- Crapps, D.K., and Schmertmann, J.H. (2002) Compression top load reaching shaft bottom — theory versus tests. In Proceedings of the International Deep Foundations Congress, Orlando, Fla., 14–16 February 2002. Geotechnical Special Publication No. 116. Edited by M.W. O'Neill and F.C. Townsend. Geo-Institute, American Society of Civil Engineers, Reston, Va. Vol. 2, pp. 1533–1549.
- Meyerhof, G. G. (1976), "Bearing Capacity and Settlement of Pile Foundations," JGED, ASCE, vol.102, GT3, March, pp. 195-228.
- Neoh C.A. (2006). Pile Foundation Design and Construction What Can Go Wrong?. Journal of Jurutera, June 2006.
- Neoh C.A. (2003). "Pile Foundation Design and Construction-An Overview" BEM Bulletin, Vol. 19 Jun 2003 and Vol. 20 Sept 2003.
- Reese, L.C. & O'Neill, M.W. (1989) Drilled Shafts: Construction Procedures and Design Methods, U.S. Department of Transportation - Federal Highway Administration (Office of Implementation, Washington, 564p

- Salgado R. & Lee J.(1999) Pile design Based on Cone Penetration Test Results. Final Report for Joint Transportation Research Program, Indiana Department of Transportation, Purdue University, pp. 9-14.
- Turner, J. 2006. Rock-socketed shafts for highway structure foundations: a synthesis of highway practice. NCHRP Synthesis 360. National Cooperative Highway Research Program (NCHRP), Transportation Research Board, Washington, D.C.
- Whitaker, T. & Cooke, R.W. (1966). "An Investigation of the Shaft and Base Resistance of Large Bored Piles on London Clay." Proceedings of the Symposium on Large Bored Piles, London, pp 7-49.
- Williams, A.F. & Pells, P.J.N. (1981), Side Resistance Rock Sockets in Sandstone, Mudstone, and Shale. Canadian Geotechnical Journal, 18, pp. 502-513.
- Youd, T. L.; Member, Asce, I. M. Idriss, Chair; Fellow, Asce, Ronald D. Andrus, Co-Chair; Arango, Ignacio; Castro, Gonzalo; Christian, John T.; Dobry, Richardo; Finn, W. D. Liam; et al. (2001). "Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils". Journal of Geotechnical and Geoenvironmental Engineering 127(10): 297–313