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ABSTRACT 

 

 

 

 

Increment in turbine inlet temperature (TIT) is essential for further 

improvement in thermal efficiency and higher power output of next generation gas 

turbine engines. Over past decades, significant effort has been made to increase the 

TIT through development of effective cooling strategies to maintain the blade 

temperature below the melting point of blade material. Film cooling techniques have 

been extensively researched to achieve higher TIT. This work was carried out 

experimentally and numerically to determine the enhancement of film cooling through 

the use of twisted film cooling hole. The existing combustor test rig was modified to 

suit experimental investigations of twisted hole film cooling on a flat plate. The 

Reynolds number was set at Red = 6200 to investigate the turbulent flow regime. The 

computational fluid dynamics (CFD) software was employed for the numerical 

simulation of the experimental configurations and other geometries of the twisted 

cooling hole. High mesh density was applied in the flow domain to capture the 

significant details of the flow induced by the twisted cooling hole. Three different 

cooling hole shapes of circular, rectangular and twisted rectangular were investigated 

under a constant temperature boundary condition and variable thermo-physical 

properties. The CFD processes were verified through various methods. Simulated 

results were compared to the experimental measurements giving good agreement and 

therefore the validation was satisfactory. The results showed that the twisted cooling 

holes provide a better cooling effectiveness compared to the smooth one. It was found 

that the cooling effectiveness was enhanced at lower blowing ratios by about 1.1-1.5 

times than that of a smooth film cooling hole. This effectiveness enhancement was 

accompanied by an appreciable increase in heat transfer coefficient in the range of 1.2-

1.6. The improvement in the thermal performance was also found to be in the range of 

1.2-1.5. Eventually, the heat transfer coefficient correlation relevant to the parameter 

studied in the present work was proposed. 
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ABSTRAK 

 

 

 

 

Peningkatan suhu salur masuk turbin (TIT) adalah perlu untuk pembaikan 

kecekapan therma dan keluaran kuasa lebih tinggi untuk enjin turbin gas generasi 

mendatang. Sejak beberapa dekad yang lalu, pelbagai usaha telah di lakukan untuk 

meningkatkan TIT menerusi strategi penyejukan bilah yang lebih efektif untuk 

mengekalkan suhu bilah di bawah takat lebur bahan bilah tersebut. Teknik pendinginan 

saput telah melalui penyelidikan yang meluas untuk mencapai TIT lebih yang tinggi. 

Kajian penyelidikan ini telah dijalankan melalui ujikaji dan kaedah berangka, untuk 

mengkaji satu kaedah baru peningkatan pendinginan saput melalui penggunaan lubang 

pendinginan saput berpintal. Rig ujian pembakaran sediada telah diubahsuai untuk 

penyelidikan secara ujikaji pendinginan saput lubang berpintal di atas plat rata. 

Nombor Reynolds telah ditetapkan pada 6200 untuk mengkaji aliran dalam rejim 

gelora. Perisian dinamik bendalir berbantu komputer (CFD) digunakan untuk simulasi 

berangka konfigurasi ujikaji dan geometri-geometri lain lubang pendinginan berpintal. 

Ketumpatan jejaring simulasi yang tinggi digunakan di dalam domain aliran untuk 

menangkap butiran aliran penting secara terperinci yang teraruh oleh lubang 

pendinginan berpintal. Tiga bentuk keratan lubang pendinginan iaitu bulat, empatsegi 

dan empatsegi berpintal telah diselidik di bawah keadaan suhu malar dan aplikasi sifat 

pembolehubah thermo fizikal yang lain. Proses simulasi CFD telah melalui 

penentusahan melalui berbagai kaedah. Keputusan simulasi apabila dibandingkan 

dengan pengukuran ujikaji menghasilkan perbandingan yang baik dan oleh itu 

pengesahsahihan adalah memuaskan. Seterusnya, keputusan ujikaji menunjukkan 

lubang penyejukan berpintal menghasilkan keberkesanan pendinginan yang lebih baik 

berbanding jenis licin. Didapati juga keberkesanan pendinginan pada nisbah peniupan 

rendah telah dapat dipertingkatkan sebanyak 1.1-1.5 kali lebih baik dari lubang 

pendinginan saput licin. Peningkatan keberkesanan ini juga disertai dengan 

peningkatan ketara pekali pindahan haba sebanyak 1.2-1.6. Peningkatan prestasi haba 

juga diperolehi diantara julat 1.2-1.5. Seterusnya, sekaitan pekali pindahan haba yang 

berkaitan dengan parameter yang dikaji dalam kajian ini telah dicadangkan. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1. Background 

 

 

Cooling techniques play a key role in improving efficiency and power output 

in modern gas turbines [1]. Film cooling is one of the most effective and widely used 

cooling methods applied to gas turbine blade to prevent thermal failure in extremely 

high temperature operations [2].  

 

 

The temperature of a gas turbine especially the turbine inlet temperature (TIT) 

is increased year-by-year in order to increase the output power of the turbine, and it 

has come to a stage that the required TIT is higher than the melting point of the blade 

material. The blade must be effectively cooled to ensure that the engine works 

normally [3]. Figure 1.1 shows a turbine blade of a gas turbine engine that uses film 

cooling technique, where the cooling holes are equally spaced and arranged in rows. 
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Figure 1.1   Turbine blade 

 

 

The increased role of gas turbine engines for power generation such as the 

generation of electrical power and the powering of aircraft flight have generated a lot 

of interest among researchers leading to advancement in research in turbine cooling 

technology. Cooling holes shield components from temperatures that are often higher 

than their melting point, making their precise design and manufacture a critical feature 

of the engine. 

 

 

The need for a more efficient thermal power output has also led to the 

development of more advanced gas turbines thus requiring lower flow rate for the film 

cooling necessary for keeping the gas turbines working under controlled temperatures 

[5]. Ghorab [6] carried out several studies and have looked into the complexities 

associated with the heat and flow processes of gas turbine blade film cooling with the 

intent of determining the best cooling technique.  

 

 

Advanced film cooling techniques are vital in the effort to increase cooling 

performance, thus increasing the gas turbine thermal efficiency. Throughout the last 

few years, film-cooling strategies have been developed to maintain a blade temperature 

below the alloy melting point. Cooling hole geometries play a very important role in 

the enhancement of film cooling over a turbine blade surface.  
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1.2. Film cooling 

 

 

To improve the thermal efficiency of a gas turbine, higher TIT is desired 

requiring more effective cooling strategies of the components downstream. Film 

cooling of the high pressure turbine is commonly employed in modern turbine designs 

[7].  

 

 

The coolant flow is injected from the compressor and is bled through discrete 

film cooling holes on the surface of the blade. The role of the coolant layer is to protect 

the components on the high temperature gas path and therefore increases the life of 

these components. The interaction between the coolant flow and the hot flow causes 

aerodynamic losses in the turbine stage. 

 

 

In addition, coolant air represents a loss of the process air available for power 

or thrust. For these reasons one of the main objectives in cooling design is to use 

coolant as minimal as possible while ensuring a proper coverage of the coolant on the 

hot gas path components. 

 

 

 

 

1.3. Dynamics of a jet in a cross flow 

 

 

Understanding the dynamics of jet in cross flow is crucial in several 

applications like fuel injection in combustion chambers, thrust vectoring of high speed 

turbojets and VSTOL (vertical or short take off left) aircrafts, pollutant dispersal from 

chimneys and film cooling of gas turbines. Figure 1.2 shows a modern turbine with 

the transition duct and first turbine stage highlighted. 
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Figure 1.2   MS5002E gas turbine and first stage detail [8]. 

 

 

There have been extensive numerical [9, 10, 11, 12] and experimental [13, 14, 

15, 16] studies that have explored the dynamics of jet in cross flow. 

 

 

 

 

 

 

 

 



5 

1.4. Problem statement 

 

 

Cylindrical film cooling holes are the most economical to manufacture, but 

shaped holes have been widely used in military and commercial engines due to the 

better cooling performance than cylindrical holes [17]. Film cooling has becomes the 

most common and important cooling techniques in rotor and stator blades of a gas 

turbine and has been continuously researched. The need for more power output as well 

as better thermal efficiency in future advanced gas turbine necessitated a higher TIT. 

Higher TIT will significantly contribute to the increase in power and thermal 

efficiency. However, the subsequent increases in the turbine blade temperatures need 

to be cooled effectively and in many instances by a better film cooling technology. 

High performance and more advance film cooling technologies are needed to protect 

the surface of the blade and this can be obtained through various innovative methods. 

Therefore, many new film cooling configurations have been researched by utilizing 

swirling motion generator to create vortex to the coolant flow, to improve cooling 

performance. Coolant injection with a suitable swirling motion could lead to a 

significant improvement in film cooling effectiveness. In this study, the feasibility of 

employing twisted cooling hole to produce the swirling motion will be investigated to 

determine the enhancement in cooling effectiveness and the corresponding heat 

transfer coefficient. The unique twisted hole shape is envisaged to induce vortices near 

the secondary hole of the coolant flow and these vortices will help to keep the plate 

surface cold. 

 

 

 

 

1.5. Research Hypothesis 

 

 

Based on the literature review in Chapter two, advanced film cooling hole 

geometry are essential for the next generation gas turbine engines. Several studies to 

enhance the cooling effectiveness and heat transfer coefficient have been considerably 
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carried out. However, there are still many avenues to achieve a better cooling 

technique.  

 

 

 It hypothesizes that the mixing of flow between main flow (hot) and the injection 

from twisted cooling holes (cool) will produce a unique film cooling characteristics. 

The modification to the film cooling characteristics generated by the ensuing vortices 

could be controlled by the hole twisted angle and the secondary cooling hole angle. 

This unique flow pattern are studied using advance CFD technique validated by a 

reliable experimental method and the result could be deduced in term of the heat 

transfer performance and film cooling effectiveness.  

 

 

 

 

1.6. Research questions 

 

 

Following the statement of the problem, the research questions for this 

particular study are as follows: 

1- How can the degree of twisted angle of holes affect the cooling effectiveness and 

the heat transfer coefficient? 

2- What is the effect of secondary holes angle (β) on the cooling effectiveness? 

3- Does the cross section shape of twisted holes affect the effectiveness and the 

heat transfer coefficient? 

4- What is the mechanism of which the effectiveness being enhanced in twisted 

holes? 

5- Can this mechanism be studied effectively using CFD simulation? 
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1.7. Objectives 

 

 

The main goal of this study is to determine the cooling effectiveness 

enhancement on blade turbine surface due to twisted holes arrangements in order to 

achieve best cooling effectiveness. This main goal can be achieved by following these 

objectives. 

 

 

1. To determine the effect of twisted cooling angles (α) experimentally of holes 

and the secondary hole cooling angles of the hole (β) (30°, 45° and 90°) on 

the effectiveness (η) and the heat transfer coefficient (hf/ho). 

 

 

2. To determine the effect of twisted shape of holes (circular, rectangular and 

hexagonal) numerically on the cooling effectiveness (η) and the heat transfer 

coefficient (hf/ho). 

 

 

 

 

1.8. Scope of Work 

 

 

In order to ensure the success of the research, several scopes have been 

identified as follows: 

1- Turbulent convective heat transfer of Newtonian fluid (air) with all fluid 

properties such as viscosity μ, heat capacity Cp and thermal conductivity k are 

assumed to vary with temperature. 
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2- The same flow temperature will be considered for all cases, i.e. the hot flow 

will be at Tm=350 K and the cold flow from cooling holes will be at  

Tj=300 K. 

3- The study will be carried out experimentally and numerically. 

4- Different blowing ratio (BR) of 0.5 to 2.0 will be used. 

 

The experimental study will be carried out using the existing gas turbine 

combustion rig with a modified rectangular working section. The same configuration 

will be meshed and simulated numerically using commercial computation fluid 

dynamics (CFD) codes, ANSYS FLUENT 14. The simulated results will be validated 

using the measured experimental results. 

 

 

 

 

1.9. Organization of the thesis  

 

 

This thesis consists of six chapters. This chapter presents the motivation and 

objective of the current study.  

 

 

Chapter two contains the literature review, it shows various techniques used to 

enhance the cooling effectiveness and heat transfer coefficient of gas turbine blade. 

This chapter classified into parts, experiment studies and numerical studies. Each study 

in these parts shows in detail the geometry of cooling hole, limitation and outcomes.  

 

 

 Apparatus and methodology to the test rig is described entirely in chapter three. 

The test rig has been built to investigate the film cooling effectiveness and heat transfer 

coefficient performances of different cooling hole geometries on the flat plates. The 

description of the design, construction, and development of the mechanical, 

instrumentation, and automated data acquisition systems will be clarified in Chapter 
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three. In addition, this chapter will be closed by a discussion of the uncertainty 

analyses, experimental procedure. 

 

  

Chapter four focus on the setting up of the numerical simulation such as the 

physical domain and the detail of the CFD computational process, as well as the 

method to ensure reliable outputs. 

 

 

Through chapter five, the performance film cooling effectiveness of the twisted 

film cooling hole has been investigated experimentally and numerically. The film 

cooling performance of the corrugation has been presented and compared with other 

traditional and advanced published cooling holes geometries (smooth hole).  The 

summary of the adiabatic and conjugate film cooling performance for numerical study 

will be presented at the end of chapter five.  

 

 

A conclusion of the current work and recommendation for future studies will be 

presented in chapter six.  
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