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ABSTRACT 

Carbon dioxide (CO2) is the most polluting greenhouse gas released into the 

atmosphere in large quantities causing global warming. Immobilization of amine 

groups containing compounds on a solid substrate is a straightforward approach for 

CO2 adsorption. The main aim of this study is to prepare new amine-containing 

adsorbents having nanofibrous structures for efficient capturing of CO2 from 

different environments.  The adsorbent preparation involved i) electrospinning of 

syndiotactic polypropylene (s-PP) solution, ii) radiation induced graft 

copolymerization of glycidyl methacrylate (GMA) onto the electrospun nanofibers, 

and iii) functionalization of poly-GMA grafted s-PP nanofibrous mats with different 

amines (ethanolamine, diethylamine and triethylamine). The effect of various 

electrospinning parameters such as voltage, needle tip to collector distance and flow 

rate on the morphological properties of the produced nanofibers was studied using 

the response surface method (RSM). The effects of grafting parameters such as 

absorbed dose, monomer concentration, time and temperature on the degree of 

grafting (DG) were also investigated. The Scanning electron microscopy (SEM), 

Fourier transform infra-red (FTIR), Differential scanning calorimetry (DSC), 

Thermogravimetric analysis (TGA) and Brunauer-Emmet-Teller (BET) techniques 

were used to determine morphological, chemical, thermal properties and stability, 

changes in the structure of the nanofibers after each modification step. Finally, the 

amine-bearing nanofibers were tested for CO2 adsorption in a fixed bed column 

under different operating parameters such as DG in adsorbent, amine type, initial 

CO2 concentration and temperature. The highest CO2 adsorption capacity of 2.87 

mmol CO2/g was achieved in an adsorbent having 300 % DG and functionalized with 

ethanolamine at 15 % initial CO2 concentration, atmospheric pressure and 30 °C. 

This study showed that new class of CO2 adsorbents can be successfully prepared by 

combining electrospinning with radiation induced grafting techniques followed by 

amine loading. 
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ABSTRAK 

Karbon dioksida (CO2) merupakan gas rumah hijau paling mencemar yang 

dilepaskan dalam kuantiti yang tinggi ke dalam atmosfera dan menyebabkan 

pemanasan global. Immobilisasi kumpulan amina pada substrat pepejal merupakan 

pendekatan mudah untuk menjerap CO2. Matlamat utama kajian ini ialah 

menyediakan penjerap amina baru yang mempunyai struktur gentian nano untuk 

menjerap CO2 dengan efisien dari pelbagai persekitaran. Penyediaan bahan penjerap 

melibatkan i) elektroputar larutan polipropilena sindiotaktik (s-PP), ii) 

pengkopolimeran cangkuk aruhan sinaran glisidil metakrilat (GMA) pada gentian 

nano elektroputar dan iii) pengfungsian poli-GMA cangkukan PP gentian nano 

dengan pelbagai amina (etanolamina, dietilamina dan trietilamina). Kesan daripada 

pelbagai parameter elektroputar seperti voltan, jarak antara hujung jarum dan drum 

pengumpulan dan kadar aliran ke atas sifat-sifat morfologi gentian nano yang 

dihasilkan dikaji menggunakan kaedah gerak balas permukaan (RSM). Kesan 

parameter cangkukan seperti dos terserap, kepekatan monomer, masa dan suhu ke 

atas kadar cangkukan (DG) juga disiasat. Teknik mikroskop pengimbasan electron 

(SEM), inframerah spektrometer transformasi Fourier (FT-IR), kalorimetri 

pengimbasan pembezaan (DSC), analisis termogravimetri (TGA) dan Brunauer–

Emmett–Teller (BET) telah digunakan untuk menentukan sifat morfologi, sifat kimia, 

sifat haba dan kestabilan, perubahan dalam struktur gentian nano selepas setiap 

langkah pengubahsuaian. Akhirnya, gentian nano mengandungi amina telah diuji 

untuk penjerapan CO2 menggunakan turus lapisan tetap di bawah parameter operasi 

yang berbeza seperti DG dalam penjerap, jenis amina, kepekatan asal CO2 dan suhu. 

Kapasiti jerapan tertinggi iaitu 2.87 mmol CO2/g dicapai pada penjerap yang 

mempunyai 300 % DG dan difungsikan dengan etanolamina pada 15 % kepekatan 

asal CO2, tekanan atmosfera dan 30 °C.  Kajian ini menunjukkan bahawa penjerap 

CO2 yang baru berjaya disediakan dengan menggabungkan elektroputar dan teknik 

cangkukan aruhan sinaran diikuti dengan pemuatan amina. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Global warming is one of the most crucial problems faced by human being 

for the past 50 years. This phenomenon is caused mainly by emission of greenhouse 

gases to the atmosphere. Carbon dioxide (CO2), sulfur hexafluoride (SF6), methane 

(CH4), hydrofluorocarbons (HFCs), water vapor, nitrous oxide (N2O), and 

perfluorocarbons (PFCs) are the most critical greenhouse gases which accumulate in 

the atmosphere, preventing the heat from reflecting back to the space, i.e.  act like an 

“earth blanket” and result in an increase in the global temperature [1].  

A certain level of these gases is naturally available in the atmosphere to keep 

the earth surface warm and inhabitable. Before industrial age in mid-17th century, 

there was a delicate balance between these gases in the atmosphere and the gases 

absorbed by natural waters (oceans, seas, etc.). However, the emergence of industrial 

era and increased need of human being to energy lead to the emission of large 

amounts of carbon dioxide into the atmosphere, disturbing this balance and 

increasing earth temperature; nowadays this phenomenon is known as “global 

warming”. 

Greenhouse gases can stay in the atmosphere for about a century. In the latest 

U.S. climate action report (2014), global warming is mentioned as “no longer a 

distant threat”. According to this report, the average temperature of the United States 
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has increased by about 0.8˚C since 1895 from which more than 80% is for the time 

period after 1980. If serious actions are not taken to reduce the increasing trend of 

CO2 emission to the atmosphere, the average temperature of the earth is predicted to 

increase by 1.4-5.8˚C until 2100. This temperature increase, either at the lower or at 

the higher end, will cause tremendous climate changes resulting in water expansion 

and sea level rise due to glacier melting. Intense tornados, hurricanes, floods, 

droughts, acidic oceans and spread of tropical diseases to new areas are just some of 

the examples of the effect of this climate change on earth. A recent study shows that 

1˚C rise in global temperature results in two to seven folds increase in the number of 

the events in the scale of Katrina [2]. In 2012 only, there were 11 climate disasters in 

the United States with estimated damage of more than 11 billion USD [3]. 

CO2 is the most important greenhouse gas released into the atmosphere in 

large quantities. The effect of CO2 on the earth temperature was first suggested by 

Svante Arrhenius in his landmark paper published in 1896 [4]. In his theory, earth 

receives energy from sunlight and re-emits some part of this energy as IR irradiation 

into the space. Greenhouse gases such as CO2 accumulated in the atmosphere absorb 

this IR radiation and prevent it from re-emitting into the space and hence, help to 

increase the earth temperature. According to the U.S. climate action report 2014, 

carbon dioxide accounts for more than 80% of greenhouse gases (Figure 1.1) [3]. 

 

Figure 1.1 Greenhouse percentages based on teragram CO2 equivalent (CO2e) [3] 
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 Because of the growing concern on climate change driven by this man-made 

carbon emission, governments all over the world are looking at ways to reduce or 

stabilize their carbon footprint. United Kingdom has set a plan to reduce its carbon 

emission by 60 percent by 2050 and European Union has agreed to cut its emission 

by 20 percent until 2020. In 2009, the United States also committed to reduce its 

greenhouse gases emissions to the range of 17% below its level in 2005 by 2020 [3]. 

Burning of fossil fuels such as coal, natural gas and oil comprises 87% of all 

CO2 emissions by human being. Deforestation, i.e. clearing the forests and other land 

use changes are responsible for 9% of CO2 emission increase into the atmosphere. 

The remaining 4% is the result of industrial activities such as cement manufacturing 

[5]. Furthermore, production of electricity and heat represented 42% of global CO2 

emissions in 2013. Transportation, industry and residential use were placed in 

subsequent ranks with 23, 19 and 6% of global CO2 emissions, respectively. The 

remaining 10% was for services and other sectors such as agriculture  [6]. 

Generally, there are three methods for reducing CO2 emissions into the 

atmosphere: 1) more efficient uses of energy, 2) using alternative energy resources 

such as renewable energy sources e.g. solar energy and wind energy, and 3) using 

CO2 capture and sequestration (CCS) technologies. More efficient use of energy and 

using alternative energy resources are far from real-world applications. Therefore, 

CCS technologies currently are the most commonly used methods in large scales to 

diminish CO2 emission. 

Carbon sequestration which is defined as long-term storage of carbon dioxide 

or other forms of carbon to mitigate or delay global warming, is a useful technique of 

slowing down global warming without any necessary reduction in fossil fuels 

consumption. The first step in this process is capturing and separating carbon dioxide 

from waste gas. Four main methods have been developed for CO2 separation and 

capture including cryogenics, membrane diffusion, solution absorption and solid 

adsorption.  

Cryogenic distillation is widely used for the separation of other gases, but for 

CO2 capturing from flue gas, this method is costly and not practical. Separation of 

CO2 from a mixture of gases using membranes is very useful when the concentration 
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of CO2 is very high. In the case of capturing carbon dioxide from post-combustion 

flue gas, the content of CO2 is very dilute and this method is not very efficient. 

Liquid amine based process (also known as amine scrubbing) is the most commonly 

used method for commercial removal of CO2. This method involves using 

monoethanolamine, diethanolamine, or methyldiethanolamine solutions and can 

remove carbon dioxide effectively [7].  

Recently, there has been a great interest on solid adsorbents for CO2 

capturing. These materials can be categorized into physi-sorbents and chemi-

sorbents. In physi-sorbents including activated carbon and zeolites, CO2 is attached 

onto the surface of the adsorbent material through physical weak interactions. Even 

though the adsorption capacity of these materials is high and they can operate in near 

ambient temperatures, humidity which is usually available in CO2 adsorption 

environments has negative effect on their performance and furthermore, their 

adsorption capacity decreases with temperature increase [8, 9]. 

In chemi-sorbents, usually amine functional groups are immobilized on 

organic or hybrid solid substrates using physical or chemical interactions. 

Impregnation of amines on organic substrates such as zeolites results in the 

formation of the first group of amine-containing solid adsorbents. In these materials 

adsorption capacity is high, but amine functional groups are washed away after a few 

cycle of adsorption/desorption [10]. Another group of chemi-sorbents can be 

synthesized by covalent bonding of amine-containing molecules onto silica base 

material. Adsorption capacity of the synthesized adsorbent is usually high, but amine 

efficiency is low and adsorption kinetics is slow.  

1.2 Problem Statement 

CO2 is the most critical greenhouse gas released into the atmosphere in large 

quantities. This large amount of CO2 in the atmosphere increases the earth 

temperature and prompts to tremendous problems that affect the existence of the 

human being such as intense tornados, hurricanes, floods, droughts and acidic rains. 

The main part of the CO2 emission comes from combustion of fossil fuels which are 
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the main source of energy used to meet energy demands of humanity for now and the 

near future. Approximately 85% of human energy consumption comes from fossil 

fuels. It was estimated that more than 32 billion tons of CO2 was released into the air 

as a result of burning of fossil fuels in 2013 [6].  

Currently, liquid amine absorption is the main commercial method used for 

CO2 capturing. However, this process involves some challenges including high 

regeneration energy, large equipment size, solvent degradation, and equipment 

corrosion which limit its application in the future [11, 12].   

 Solid adsorption is an alternative technique attracting more attention 

recently. Among solid adsorbents, polymeric microfibers containing amine 

functional groups have shown some advantages over other adsorbents based on other 

kinds of substrates. Particularly, fibrous adsorbent have flexibility, low temperature 

function, humidity-aided adsorption mechanism and easy regeneration [13]. 

However, the adsorption capacity of these adsorbents is low because of incomplete 

access to amine functional groups. Furthermore, the work capacity of the adsorbent, 

pressure drop and production cost need to be improved. 

One of the possible approached to improve the work capacity and the 

efficiency of microfibrous adsorbents is to decrease the size of the fibers and use 

nano-scale fibers i.e. nanofibers. Single nanofibers are one-dimensional structures 

made from various organic (polymers) and inorganic materials. Polymeric nanofibers 

usually are formed as non-woven mats, forming 3-D structures. Like microfibrous 

non-woven mats, nanofibrous mats have porous interconnected architecture formed 

due to the overlapping single fibers. Recently there has been an increasing interest on 

these structures because of their fascinating properties. Although there are many 

ways for producing nanofibers, such as phase separation [14], and template synthesis 

[15], electrospinning is the most versatile and commonly used method.  

The nanofibrous mats or sheets have a 3-D porous structure and because of 

very small diameter of its fibers, the surface area is very high. Since adsorption 

occurs on the surface of materials, thus surface area is a very important factor in 

adsorption based technologies. On the other hand, because of the dominance of slip 

flow in nanofibrous structures, the pressure drop across filters made from nanofibers 
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is presumably lower than microfibrous counterparts. So, electrospun nanofibrous 

mats are very good candidate substrates for producing CO2 polymeric adsorbent 

which is the main aim of this project. Several studies have already been conducted on 

using functionalized micro- and nano- fibers for removing different pollutants from 

solutions such as heavy metal ions and dyes [16-19]. The results showed that these 

ionically functionalized fibers are very promising chelating materials for adsorption 

and separation applications. 

While nanofibers are very promising materials in different applications, they 

usually need to be modified via different techniques to impart functional or ionic 

groups and desired characteristics for a particular application. There are several 

methods for modifying polymeric nanofibers such as dip-coating, interfacial 

polymerization, and graft polymerization. Amongst these techniques, radiation 

induced graft polymerization (RIGP) or radiation induced grafting is very promising 

modification technique because of its potency to modify chemical and physical 

characteristics of polymers substrates in various physical forms (films, particles or 

fibers) without changing their inherent properties [20].  

Combining these two fascinating techniques (electrospinning and RIGP) 

could provide a versatile and convenient way for producing polymeric nanofibrous 

mats for removing CO2 from different environments. An intensive search in literature 

revealed that preparation of functionalized nanofibrous adsorbent for CO2 capturing 

has not been reported yet. 

1.3 Objectives of the Study 

The objective of this work is to develop a new nanofibrous amine bearing 

adsorbent for CO2 separation from different environments at ambient conditions 

using electrospinning of s-PP followed by radiation induced graft polymerization of 

an acrylate monomer followed by functionalization with aminating agents. 

The specific objective of the study is sub-divided into the following: 
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1. To prepare s-PP nanofibrous mats with controlled diameter by optimization 

of electrospinning parameters. 

2. To modify the obtained nanofibrous mats by radiation induced grafting of 

controlled amount of glycidyl methacrylate (GMA) under controlled 

parameters. 

3. To functionalize the obtained ploy(GMA) grafted nanofibrous mats with 

appropriate amine agents. 

4. To determine the properties of the obtained functional adsorbent using 

chemical and materials research aspects in correlation with the performed 

modification.  

5. To evaluate the performance of the adsorbent for CO2 capturing in a fixed 

column under different operating conditions. 

1.4 Scope of the Study 

The scope of the study involves 8 stages. Dissolving polymeric material (PP 

here) in an adequate solvent system to obtain a polymer solution suitable for 

electrospinning was the first step. Then, nanofibrous mats were produced with 

electrospinning using as prepared polymeric solution and the effect of different 

parameters including voltage (8-16 kV), flow rate (1-4 ml/h) and distance between 

needle tip and collector (10-20 cm) on fibers properties (diameter and morphology) 

was studied. 

Characterization of electrospun nanofibers was carried out using various 

techniques including scanning electron microscope (SEM), differential scanning 

calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared 

spectroscopy (FTIR), and Brunauer–Emmett–Teller porosity analysis (BET). In the 

next stage, electrospun nanofibers were modified using radiation induced graft 

polymerization of GMA onto s-PP nanofibers in order to introduce functional groups 

to the polymeric backbone. This includes irradiation of the fibers with electron beam 
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and investigation of the effect of the grafting parameters including monomer 

concentration (2.5-20 vol%), absorbed dose (40-200 kGy), time (20-120 min) and 

temperature (40-70°C) on the degree of grafting. 

After grafting the obtained poly(GMA) grafted s-PP nanofibers also were 

characterized to identify their morphological (SEM), chemical (FTIR) and thermal 

(DSC and TGA) properties and evaluate their surface area and pore characteristics 

(BET). 

Functionalization of poly(GMA) grafted s-PP nanofibers using three 

aminating agents such as ethanolamine, diethylamine or triethylamine was the next 

step to introduce amine groups for CO2 adsorption. This includes conversion of the 

epoxy groups of GMA to various amine groups by treatment with the amine-

containing compounds under controlled conditions of amine concentration (20-100 

vol%), temperature (30-80 °C) and time (7 min- 24 h). After Amination, the same 

Characterization techniques were used to identify their morphological (SEM), 

chemical (FTIR) and thermal (DSC and TGA) properties and evaluate their surface 

area and pore characteristics (BET); 

Finally, CO2 adsorption capacity of the modified nanofibers was evaluated in 

a fixed bed column and the effect of different operating parameters including degree 

of grafting (150-400%), amination agent (EA, DEA or TEA), initial concentration of 

CO2 in the feed gas (5-15%) and temperature (30-50°C) on its adsorption capacity 

was studied. The breakthrough curves were also established for the three types of 

adsorbents. The adsorption and desorption cycles were established. 

1.5 Significance of the Study 

This work provides a new amine-containing polymeric adsorbent for CO2 

capturing having nanofibrous structure for the first time using a unique combination 

of two fascinating methods involving electrospinning and radiation induced graft 

copolymerization. The newly obtained adsorbent is capable of capturing CO2 from 

various environments in a relatively low temperature and pressure. Moreover, it 
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could be recovered very easily and using less energy without any need to complex 

and expensive processes. The adsorbent can be used in capturing CO2 from 

atmosphere and help mitigate greenhouse effect. 

The obtained adsorbent has smaller in fiber diameters and is lighter in weight 

than commercial products. This can be harnessed in the development of smaller 

adsorbent columns with larger surface area and higher operating capacity and 

certainly can lead to an improvement in the economy of the process. This could help 

industries to cut their CO2 emission following stagnant regulation imposed by 

environmental authorities in various countries. Besides, the column filter that can be 

developed based on this adsorbent can be possibly used in improving in-door air 

quality in work places and homes. Such filters can be used in air-condition 

manufacturing and health and medical care industries. 

The electrospinning of s-pp leading to the formation of substrate mats that 

was used for grafting of GMA is rarely reported in literature. Thus, the work reported 

herein is an interesting contribution for electrospinning of thermoplastic polymers 

such as PP. The RSM used for optimization of electrospinning parameters provide a 

statistical tool to design and predict the morphology of the nanofibers.   

This work also provided an opportunity to optimize the parameters of 

radiation induced grafting of GMA onto s-PP to obtain graft copolymer capable of 

hosting various amine groups. This paves the way for introducing other functional 

groups that can further enhance the adsorption capacity of the obtained adsorbents. 

1.6 Contribution 

Contributions of the study are as follows: 

 Optimization of electrospinning of s-PP in near room temperature was 

reported for the first time and a linear model was established for various 

electrospinning parameters. 
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 Radiation induced grafting of GMA on electrospun s-PP nanofibers using 

pre-irradiation technique is reported for the first time and the effect of 

various parameters is studied. 

 Amination of grafted electrospun s-PP nanofibers is studied and the effect 

of various parameters on amination degree is researched. 

 A new nanofibrous solid adsorbent containing various types of amine 

functional group was prepared capable of capturing CO2 in room 

temperature with very high amine efficiency. 

 The application of the adsorbent can be extended to remove various 

species from air using various functional groups during functionalization 

stage. 

1.7 Thesis Outline 

The current thesis is presented in five chapters. Chapter 1 is an introduction 

that covers background of the study and problem statement and describes objectives, 

scope and significance of the study. In chapter 2, a comprehensive literature review 

including CO2 removal techniques and their advantages and limitations, 

electrospinning and its parameters and applications, radiation induced grafting, and 

nanofiber characterization techniques is given. Chapter 3 contains the methodology 

used for fabrication, modification, characterization and testing of nanofibers for CO2 

adsorption. In Chapter 4 the results are presented and discussed with reference to 

previous works, obtained data are analyzed and interpreted. Chapter 5 presents the 

final conclusions and recommendations to improve the work in future studies. 

Finally, the references used in preparing this thesis are listed. 
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foggy, showing that some of the polymer molecules are solidifying in the solution. It 

leads to the formation of some small beads in all electrospun sample. To get better 

results, it is suggested to use a heating system such as infra-red illumination heater or 

syringe jacket heater to hold the temperature of the solution at 60˚C all the time 

during electrospinning. Even though increasing the chamber temperature up to 45˚C, 

as was done in this work, reduced the solidification effect of the s-PP in the solution, 

but it did not stop the process completely. It leads to the formation of some beads, 

decreasing the surface area and affecting final fibers properties. 

The adsorption capacity of the synthesized materials was in the range of low 

to moderate. It was due to the high weight ratio of the carrier non-active polymer (s-

PP) to the total weight of the final adsorbent. Any modification that can reduce this 

ratio and increase the active, amine containing portion of the material could result in 

an improvement in the adsorption capacity and put the material in the group of high 

adsorption capacity adsorbents. One of the recommended approaches is to use 

amination agents having more than one amine group in the molecule. For example, 

using diamines (e.g. ethylenediamine: EDA), triamines (Diethylenetriamine: DETA) 

tetramines (e.g. Triethylenetetramine: TETA) or even pentamines 

(Tetraethylenepentamine: TEPA) [13] could improve the adsorption capacity by 

increasing the ratio of the active part of the adsorbent.  

Another approach for increasing adsorption capacity of the nanofibrous 

adsorbent is incorporation of physical enhancers such as carbon nanotubes, graphene, 

carbon nanoparticles, etc. into the electrospun nanofibers. Incorporation could be 

performed during electrospinning process by blending these carbon-containing 

particles into the electrospinning solution before nanofiber formation. These 

nanomaterials are known to adsorb carbon dioxide molecules through physical 

adsorption and it is expected to increase adsorption capacity of the synthesized 

material by having a synergic effect on the adsorption process by combining 

physisorption with chemisorption.  

Finally, different types of grafting monomers such as vinyl benzyl chloride 

could be used in grafting stage as an alternative for GMA to see the effect of 

including aromatic species in the adsorbent capacity of the final adsorbent. It is 
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expected to see improvement in the adsorption performance of the material through 

incorporation of aromatic rings into its molecular structure. 
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