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Terahertz and infrared spectroscopy are effective analytical spectroscopic 

techniques to identify and study the conformation and molecular interaction of the 

biomolecules. It has a huge potential in cancer diagnosis because these spectroscopies 

are non-invasive technique and do not require labelling for tissues and cells. 

Volatolomics analysis is a technique to analyse the volatile organic compounds 

(VOCs) emitted and released by human metabolites, which are not limited to breathe 

analysis. VOCs that are released by cancerous cells can be one of the bio-diagnostics 

techniques to diagnose cancer. Although studies on breath analysis have been widely 

carried out, the study of the volatolomics analysis by using Fourier transform infrared 

spectroscopy (FTIR) and Terahertz time-domain spectroscopy (THz-TDS) is still new. 

Both FTIR and THz-TDS instruments are installed with a gas cell sampling tools by 

absorption technique to analyse and detect the key species released from the VOCs. 

Lung cancer (NCL-H1299) and colon cancer (COLO320DM) cell lines are uas 

samples to identify the key species of each of the cancerous cells. The experiment has 

been verified and validated by comparing with control samples such as normal lung 

(MRC-5) cell lines, normal colon (CCD112CoN) cell lines, empty flask, air from the 

culture media and normal lab air. All the samples have been cultured into different 

sealed flasks for 24 to 120 hours, before the VOCs are collected and transferred into 

the gas cells to analyse using FTIR and THz-TDS. Hydrogen chloride and benzamide 

have been identified as key species for lung and colon cancer, respectively. These 

findings have been verified and validated by using residual gas analyser (RGA), gas 

chromatography – mass selective detector (GC-MSD), and confirmed by earlier 

literatures. A chemometric statistical analysis also has been applied to this study to 

extract the important information of the biochemical data from the VOCs with the 

greatest discriminative power and highest precision. These findings demonstrate the 

potential use of FTIR and THz-TDS as clinical tools through the volatolomics analysis. 

In addition, more work is needed if it is to be applied in clinical practice. 

ABSTRACT 
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Spektroskopi terahertz dan inframerah merupakan teknik spektroskopik 

analitikal yang efektif dalam mengenalpasti dan mengkaji struktur interaksi molekul 

bagi sesuatu biomolekul. Ia merupakan potensi yang besar dalam proses diagnosis 

kanser kerana teknik spektroskopik ini adalah tidak invasif dan tidak memerlukan 

pelabelan untuk tisu dan sel. Analisis volatolomik pula merupakan satu teknik untuk 

menganalisis sebatian organik yang mudah meruap (VOCs) yang terhasil daripada 

proses metabolisme manusia, yang mana tidak terhad kepada analisis pernafasan 

sahaja. VOCs yang dihasilkan oleh sel kanser boleh menjadi salah satu teknik bio-

diagnostik sel kanser. Walaupun kajian mengenai analisis pernafasan telah banyak 

dijalankan, tetapi kajian analisis volatolomik dengan mengunakan spektroskopi infra 

merah transformasi Fourier (FTIR) dan spektroskopi Terahertz domain masa (THz-

TDS) masih baru. Kedua-dua instrument FTIR dan THz-TDS telah dipasangkan pada 

satu alat persampelan sel gas melalui teknik penyerapan untuk menganalisa dan 

mengesan spesies petunjuk daripada VOCs yang dilepaskan. Titisan sel-sel bagi 

kanser paru-paru (NCL-H1299) dan kanser kolon (COLO320DM) digunakan di dalam 

kajian ini untuk mengesan spesies petunjuk bagi setiap kanser. Ujikaji yang dijalankan 

telah diverifikasi dan divalidasi dengan membandingkan sampel terkawal seperti 

titisan sel paru-paru normal (MRC-5), sel kolon normal (CCD112CoN), udara 

kelalang kosong, udara daripada medium kultur dan udara persekitaran makmal. 

Semua sampel titisan sel telah dikultur melalui kelalang-kelalang yang kedap yang 

berbeza selama 24 jam hingga 120 jam, sebelum VOCs dikumpul dan dipindahkan ke 

sel-sel gas untuk dianalisis menggunakan FTIR dan THz-TDS. Hidrogen klorida dan 

benzamida telah dikenalpasti sebagai spesies petunjuk bagi kanser paru-paru dan 

kanser kolon. Penemuan ini telah diverifikasi dan divalidasi dengan menggunakan 

penganalisis gas sisa (RGA), kromatografi gas – pengesan jisim terpilih (GC-MSD) 

dan disahkan oleh literature terdahulu. Satu statistikal analisis kemometri juga 

diterapkan untuk kajian ini bagi mengekstrak maklumat penting data biokimia 

daripada VOCs dengan kuasa diskrimitif terbesar dan kepersisan tertinggi. Hasil kajian 

ini menunjukkan potensi penggunaan FTIR dan THz-TDS sebagai peralatan klinikal 

menerusi analisis volatolomik. Di samping itu, kajian lanjut masih diperlukan jika ia 

ingin diaplikasikan di dalam amalan klinikal. 

ABSTRAK 
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INTRODUCTION 

1.1 Overview 

This introductory chapter illustrates the core of this study, including the 

background which stimulates this research work, the motivation for the focus of the 

work which highlighted the importance of the volatolomics analysis used in disease 

and cancer diagnosis, the problem statement, aim and objectives, scope, and 

significance of the study. This chapter is structured to introduce the huge potential of 

cancer detection through volatolomics analysis using Fourier transform infrared 

spectroscopic and Terahertz time-domain spectroscopy technique.  

1.2 Background of the Study 

Cancer is a major cause of mortality in this world with more than half a million 

deaths by the year 2013 in the United States alone, and the number of cancer cases are 

increasing every year, especially in the low and mid-income countries [1]. The 

imbalanced socio-economics from these countries led to lack of awareness, expertise 

and equipment to diagnose the cancer accurately, in short duration and cost effective 

manners. 
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In general, cancer can be diagnosed by invasive and non-invasive techniques. 

The invasive techniques, such as biopsy and endoscopy, involve making an incision in 

the body to gain access to the target area. The non-invasive techniques, such as 

imaging and laboratory testing, do not involve surgical procedures. There also are 

alternative techniques to detect and identify the cancer, such as breath analysis [2], 

chemometric analysis [3], bio-fluids analysis [4]s and others.  

Fourier transform infrared spectroscopy (FTIR) and Terahertz time-domain 

spectroscopy (THz-TDS) based technique in cancerous tissue diagnostic are dependent 

on terahertz and infrared spectral analysis between healthy and cancerous tissue 

samples. However, spectrum broadening is the most challenging to determine [5,6]. 

The broadening character of the terahertz and infrared spectrum in particular recorded 

from liquid or solid samples can mask and also interfere with other cancerous tissue 

constituents, including water spectrum thus affecting the measurement resolution. 

Detection of volatile organic compounds (VOCs) produced by cancerous cell can be a 

better option as the terahertz and infrared spectrum of the gas exhibit less broadening 

character. 

This approach allows for a better terahertz and infrared spectrum of key 

products of the VOCs to be identified [7,8]. This key product then can be used as a 

fingerprint for that particular cancer type. Other diagnostic tools have not been able to 

yield the biochemical information to identify the key species of the cancer. Even so, 

the current techniques to detect the cancer have many disadvantages, such as high cost, 

many procedure, contamination or side effects. The proposed techniques using FTIR 

and THz-TDS complement the other techniques in assisting the physician to diagnose 

the cancer effectively. 

In this study, the development of cancer fingerprints uses FTIR and THz-TDS 

is to identify the key species of volatile organic compounds (VOCs). This approach 

will utilize the gas released from cancerous cell, which contains VOCs, and infrared 

light absorbance to monitor specific absorbance patterns which produced the following 

changes in chemical compound species: for example, 6-aldehydes, isoprene, n-butyl 
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acetate, and n-propyl propionate released by hepatocellular carcinoma cell using GC-

MS [9]. 

1.3 Motivation of the Work 

This study involves three key aspects: (i) developing a system to capture and 

measure the volatile organic compounds released by cancerous cells, (ii) measuring 

and identifying the key species, and (iii) verifying and validating the key species of 

the cancer. The following sub-section highlight the significance of the study and the 

importance of the current work. 

1.3.1 Why is volatolomics analysis used in cancer diagnosis? 

Volatolomics analysis is the examination of the volatile organic compounds 

(VOCs) released by all metabolites from living things for the presence of certain 

compounds to determine the presence of cancers or diseases of the human body.  

Volatolomics analysis is not limited to breath analysis, but it is covered the VOCs 

released from breath, sweat, skin, urine, faeces and vaginal secretions.  Volatolomics 

analysis has huge potential in detection and identification of diseases and cancer 

diagnosis [10,11], especially when it is involved in the end products of cellular 

processes of the human as well as a non-destructive technique. 

There are many advantages by using Volatolomics analysis to diagnose the 

cancerous or diseases samples compared to other conventional methods; for example, 

this analysis technique is a non-invasive method which may reduce the risks and be 

less harmful to the patient and personnel. Furthermore, the results can also analyze and 

appear immediately if we have an established database of the diseases. 
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1.3.2 Why should a volatolomics analysis system be developed? 

This volatolomics analysis technique will assist physicians and medical experts 

to diagnose the cancer or other diseases effectively. The non-destructive sample 

collection technique will help some patients who have problems with conventional 

sampling and diagnostics technique. 

1.4 Problem Statement 

The VOCs released by cancerous cells can be one of the bio-diagnostics 

techniques to diagnose the cancer. Previous works on VOCs detection released by 

cancerous cells have been performed by using a few analytical instruments, such as 

gas chromatography – mass spectrometer (GS-MS), electronic nose, proton transfer 

reaction mass spectrometry (PTR-MS), selected ion flow tube – mass spectrometry 

(SIFT-MS) and ion mobility spectrometry (IMS). However, each of these analytical 

instruments had their limitations, such as the need to change the filters, cannot measure 

in real time and simultaneously, need sample preparations, not effective and time 

consuming. Fourier transform infrared spectroscopy (FTIR) and Terahertz time-

domain spectroscopy (THz-TDS) with gas absorption sampling techniques can 

overcome this limitation. The key species from VOCs released by cancerous cells can 

be identified and obtained from the literatures and National Institute of Science and 

Technology (NIST) [12] databases. The key species will be verified with other gas 

recognition technique and validated with the literature. Then, the samples are analysed 

by using chemometric statistical analysis technique for the highest discrimination and 

precision of results. 
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1.5 Objectives 

The aim of this study was to carry out a detailed study of the application of 

Fourier transform infrared spectroscopy (FTIR) and Terahertz time-domain 

spectroscopy (THz-TDS) as potential diagnostics tools for clinical use for detection of 

cancer through volatolomics analysis. The study shows the application of FTIR and 

THz-TDS as a method to characterise biochemical differences that detect and 

distinguish the volatile organic compounds released by cancerous cells. This is based 

on the FTIR and THz-TDS analytical instruments measurements and statistical 

analysis of lung and colon cancer cell lines as well as normal cell lines and control 

experiment. 

The study aims to address the following objectives: 

a) To develop a technique to capture and measure the volatile organic 

compounds (VOCs) from lung and colon cancer cell lines 

b) To measure and identify the key species of the samples using Fourier 

transform infrared spectroscopy (FTIR) and Terahertz time-domain 

spectroscopy (THz-TDS) 

c) To analyse the samples using chemometric analysis and validate the key 

species 

1.6 Scope of Study 

This study is focused on identification of two types of cancer fingerprint, such 

as lung and colon cancer, through release and uptake of volatile organic compounds 

by cell lines by using Fourier transform infrared spectroscopy (FTIR) and Terahertz 

time-domain spectroscopy (THz-TDS). 
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This study consists of four parts of science and mathematics areas. Firstly, the 

concept of physics radiation of infrared and terahertz for detection of the samples. 

Second is biomedical samples, such as cancerous cell lines, to be detected and 

identified by the analytical instruments. Thirdly, the chemical compounds need to be 

identified as key species of the particular cancer from the volatile organic compounds 

(VOCs). Fourth is the mathematical statistical analysis of the sample for the highest 

discrimination and accuracy of the samples by using chemometric analysis. 

1.7 Significance and Original Contributions of This Study 

Detection and identification of cancer fingerprints are very important and have 

a high impact to the community. In this world of health and medical practice, fast 

techniques, cost-effective and accurate detection and identification of diseases and 

cancer is very crucial to assist the medical practitioner. The cancer also affects human 

health and causes the most human mortality every year, worldwide. In addition, 

research on identification of cancer fingerprint through release and uptake of volatile 

organic compounds using analytical spectroscopy instruments such as FTIR and THz-

TDS is still new and not established yet. 

The spectroscopic analytical instruments, such as FTIR and THz-TDS, with a 

combination of gas cell sampling tools and the analytical capabilities of this 

combination were demonstrated by simultaneous in vitro gas monitoring and detection 

of cancerous cells. Furthermore, assistance of chemometric analysis technique will 

provide the highest discriminative power and highest precision of the result. 

The THz-TDS with gas analysis technique is a preliminary study to identify 

the cancer key species through volatile organic compounds (VOCs). The terahertz 

spectroscopy technique can capture the signal directly, simultaneously and effective 
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from the samples.  All of the key species will be saved into a database and can be used 

as cancer identifier for patient using mobile THz-TDS – gas analyzer in the near future. 

1.8 Thesis Structure and Organization 

Chapter 2 of this thesis reviews the literature highlighting applications of FTIR 

and THz-TDS in biomedicine, cancer identification and volatolomics analysis. This 

includes detailed discussion on spectroscopic studies in various diseases in human 

tissues, cells and bio-fluids. This is followed by an outline of the methodology and 

materials used for analysis and identification of cancerous cells in Chapter 3. This 

chapter also covers system optimization and data analysis. The results are presented in 

Chapter 4 with discussion as the data was analysed. This chapter is divided into three 

sections, presenting and discussing results from a) cell lines analysis, b) detection of 

key species, and c) verification and validation. The conclusions drawn from the work 

will follow in Chapter 5 with suggestions for future work. 

1.9 Summary 

This chapter summarizes the foundation of this study to make sure this study 

will be achieved within the prescribed scope. Two types of cancerous cells will be 

investigated in this study, namely colon and lung cancer. Fourier transform infrared 

spectroscopy (FTIR) and Terahertz time-domain spectroscopy (THz-TDS) is used as 

analytical instruments. Chemometric analysis is also used to refine and to determine 

the highest discrimination and accuracy of the results.
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