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ABSTRACT 

Alternative fuel very important in the renewable energy research. Crude 

glycerol, an excess by-product of biodiesel production that will led to environment 

problem was pyrolysed using a microwave heating technique under an oxygen-

deficient environment over a bed of coconut shell-based activated carbon catalyst. 

The batch mode pyrolysis process was carried out at various temperatures and inert 

carrier gas flow rates to determine the yield of pyrolysis product, i.e solid (bio-char), 

liquid (bio-oil), and gaseous (bio-gas). The effect of catalyst on product yield was 

also investigated. Characterization of the pyrolysed products was performed using 

different instruments. Thermogravimetric analysis (TGA) was performed to 

determine the thermal characteristic of the bio-char. The morphology of the bio-char 

produced was characterised by using a field emission scanning electron (FE-SEM) 

and energy dispersive X-Ray (EDX). The surface area of bio-char was determined 

via a Brunauer, Emmett and Teller (BET) method. The functional groups of bio-oil 

were determined by Fourier transform infrared spectroscopy (FT-IR). A gas 

chromatography- mass spectormetry (GC-MS) was utilised to analyse the liquid 

products obtained from the experiment. Gas chromatography-thermal conductivity 

detector (GC-TCD) was used to analysed the bio-gas. Results shows that the increase 

of pyrolysis temperature led to the increase of bio-gas yield. Highest bio-gas yield 

was obtained for test case of 100mL/min at 700°C, while the highest bio-liquid yield 

was obtained for test case of 1000mL/min at 400°C. The experiment results shows 

that the calorific value for the liquid product was around 14.1MJ/kg and 20.6MJ/kg 

for gaseous product, this showed that the product that produced  from the pyrolysis 

process had the potential to be an alternative fuels. 
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ABSTRAK 

 Bahan api alternatif merupakan kajian yang penting dalam bidang tenaga 

boleh baharu. Gliserol mentah merupakan hasil sampingan pengeluaran biodiesel 

yang terlebih dan akan menyebabkan pencemaran alam sekitar. Ia telah dipirolisis 

menggunakan teknik pemanasan gelombang mikro dalam persekitaran kurang 

oksigen dengan menggunakan pemangkin karbon aktif berasaskan kelapa. Proses 

pirolisis telah dijalankan pada pelbagai suhu dan kadar aliran gas lengai untuk 

mendapatkan hasil produk pirolisis, iaitu pepejal (bio-arang), cecair (bio-minyak), 

dan gas (bio-gas). Kesan pemangkin pada hasil produk itu turut disiasat. Produk yang 

dipirolisis dicirikan dengan menggunakan instrumen yang berbeza. Analisis 

termogravinetri (TGA) telah dijalankan untuk menentukan ciri haba bio-arang. 

Morfologi bio-arang yang dihasilkan dicirikan dengan menggunakan mikroskop 

imbasan elektron (FE-SEM) dan sinar-x serakan tenaga (EDX). Luas permukaan bio-

char ditentukan dengan Brunauer, Emmett and Teller (BET). Kumpulan berfungsi 

daripada bio-minyak ditentukan dengan  fourier mengubah spektrometer inframerah 

(FT-IR). Kromatografi gas-spektrometer jisim(GC-MS) telah digunakan untuk 

menganalisis produk cecair yang diperolehi daripada eksperimen. Pengesan 

kekonduksian terma (GC-TCD) telah digunakan untuk menganalisis bio-gas. 

Keputusan menunjukkan bahawa peningkatan suhu pirolisis dapat meningkatkan 

hasil bio-gas. Hasil bio-gas tertinggi diperoleh pada kes ujian 100ml/min pada suhu 

700°C, manakala hasil paling tinggi bio-cecair yang diperoleh pada kes ujian 

1000ml/min pada 400°C. Keputusan eksperimen menunjukkan bahawa nilai kalori 

untuk produk cecair adalah sekitar 14.1 MJ/kg dan 20.6 MJ/kg untuk produk gas. Ini 

menunjukkan bahawa produk yang dihasilkan daripada proses pirolisis itu berpotensi 

untuk menjadi bahan api alternatif 
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CHAPTER 1  

INTRODUCTION 

1.1 Background  

Renewable energy is one of the main energy supply resources in the world. 

The limited energy resources, pollution from usage of fossil fuels and hazards of 

nuclear power prompt scientists to find alternative energy sources. Some potential 

renewable energy sources are, biomass, hydropower, geothermal, solar, wind and 

tidal energy. In 2013, the usage of renewable energy constituted 19.1% out of total 

world energy consumed, and further increased to 24.1% in year 2015 according to 

global status report [1-3]. The report shows that renewable energy usage is increasing 

in trend as a results of shift in energy policy favouring renewable energy. Figure 1.1 

shows the total world energy consumption according to different sources for year (a) 

2015 and (b) 2013.  
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Figure 1.1: The total world energy consumption according to different source for 

year (a) 2015 and (b) 2013 [3]. 

 

The depleting oil reserves and pollutions from burning fossil fuels are among 

the problems that drive the search for alternative fuels. Biodiesel is an alternative 

fuel that is increasingly produced due to its clean combustion characteristic, 

environmental friendliness and sustainability [2]. Biodiesel is produced via 

transesterification process. Transesterification is the process where the triglycerides 

react with methanol in the presence of catalyst to produce methyl esters and by-

product of glycerol as presented in Figure 1.2. 
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Figure 1.2: The chemical reaction of the transesterification process [4]. 

 

Figure 1.3 shows the biodiesel and crude glycerol productions for year 2004 

to 2014. The production of crude glycerol is directly related to the production of 

biodiesel. The increase of biodiesel production results in the corresponding increase 

of crude glycerol. In 2004, the annual production of biodiesel was 2.4 billion litres 

and increased to 29.7 billion litres at 2014, correspondingly, the global production of 

crude glycerol increased from 0.24 billion litres in 2004 to 2.97 billion litres in 2014 

[3, 4]. The fast growing of biodiesel production and glycerol has spurred the interest 

to find alternative usage for crude glycerol. 
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Figure 1.3: The production of biodiesel and crude glycerol for year 2004 to 2014 [3, 

5, 6] 

 

The increased supply of glycerol has resulted in the drop of crude and refined 

glycerols’ price. Figure 1.4 shows the market price for crude and refined glycerols 

over the last decade. The drop in glycerol prices is directly related to the production 

of biodiesel. Refined glycerol is widely used in pharmaceutical, cosmetic and food 

industry. The price of refined glycerol is higher due to purification process involved 

[7]. The supply glut of crude glycerol resulted in the decrease in price for both crude 

and refined glycerol. It is projected that continued growth of biodiesel production 

will further result in the drop in glycerol price. One way to solve the problem of 

glycerol supply glut is to utilise crude glycerol as renewable energy by converting 

into bio-oil or bio-gas.  
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Figure 1.4: The price of crude and refined glycerol [8] 

1.2 Problem Statement 

With the increased production of biodiesel, an excess of glycerol is produced. 

The excess glycerol with low value can cause environmental problem if not properly 

disposed [9, 10]. Crude glycerol has high viscosity with low calorific value, thus no 

suitable to be used as fuel. One possible solution is to pyrolysis crude glycerol to 

obtain secondary products, either in gaseous or liquid fuel forms that can used as 

alternative fuel source. This could add value to the crude glycerol.  

Pyrolysis involves thermo-chemical process. An effective way to pyrolyse 

crude glycerol is needed. Conventionally, direct heating using furnace could be used 

to pyrolyse glycerol but this method is ineffective due to high heat loss. Microwave-

assisted heating is an alternative heating method that is more advantageous. However, 

microwave-assisted pyrolysis of crude glycerol has not been widely studied. 

Parametric study will be conducted to investigate the most suitable conditions for 

production of pyrolysis gas and liquid. Detailed characterisation of the pyrolysis 

product will be performed.  
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1.3 Objectives 

The objectives of the present research is to: 

 develop a microwave-assisted pyrolysis rig capable of pyrolysing liquid 

biomass and capturing pyrolysis product in liquid, gaseous and solid forms. 

 determine the effect of carrier gas flow rate, temperature and catalyst on the 

pyrolysis product yield. 

 characterise the crude glycerol-derived pyrolysis product, including solid, 

liquid and gaseous product.  

1.4 Scope Of Study 

 The scope of the present study is to: 

 Conduct literature study on the feedstock characteristic, pyrolysis, production 

of bio-oil, production of syngas and the method of characterising pyrolysis 

product. 

 Develop a suitable reactor for the pyrolysis experiment. Construct a 

microwave pyrolysis experimental rig and select suitable catalyst for the 

pyrolysis experiment.  

 Conduct parametric studies to determine the yield of different pyrolysis 

product. Subsequently, characterisation of the pyrolysis products are 

performed.  

 Data collection, reduction and analysis. 
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