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ABSTRACT

Wireless power transfer technique for biomedical devices has drawn great 
interest from many researchers in the biomedical domain. Biomedical devices can 
be powered up either by an external power cord or by batteries. However an external 
power cord may limit the mobility of a patient and batteries tend to have a very limited 
power capacity and these methods may pose a high risk of infection towards the patient. 
Therefore, a wireless power transfer system is proposed to solve the problem. This 
study attempts to develop a mid-range transformer based wireless power transmission 
system which is suitable to power biomedical devices. This includes the develop 
of a transmitter circuit, receiver circuit, a pair of transmitter and receiver coils and 
transformers. This study demonstrates that magnetic coupling technique is a reliable 
wireless charging technique biomedical devices due to its mid-range transmission 
and satisfactory efficiency. In order to reduce power loss, an impedance matching 
method which incorporates a step-up and step-down transformers in the transmitter 
and receiver circuit is proposed. This study also develops a wireless power charging 
system that does not emit harmful radiation towards the human body. The frequency 
for the system is within the range of 700 kHz to 900 kHz which is in accordance to 
the ICNIRP regulation. Three pairs of round-shaped transmitter and receiver coils pair 
have been designed and fabricated with the diameter size of 30cm, 40cm, and 50cm. 
The power supply and frequency generator are connected to the transmitter circuit 
and an oscilloscope is connected to the load of the receiver circuit. The performance 
results are recorded using a range from 4 centimeters to 110 centimeters and based on 
the tabulated results, the mid-range wireless power transfer system managed to supply 
a transfer efficiency of 60% at a distance of 35cm for the 30cm diameter coil, 62% at 
a distance of 43cm for the 40cm diameter coil and 46% at a distance of 50cm for the 
50cm diameter coil.



ABSTRAK

Teknik pemindahan kuasa tanpa wayar untuk peranti bioperubatan telah 
menarik minat ramai penyelidik dalam domain bioperubatan. Peranti bioperubatan 
boleh dihidupkan sama ada dengan kord kuasa luar atau oleh bated. Walau 
bagaimanapun wayar kuasa luar boleh membataskan pergerakan pesakit. Ini boleh 
memberi risiko jangkitan yang tinggi terhadap pesakit. Oleh itu, sistem pemindahan 
kuasa tanpa wayar adalah dicadangkan untuk menyelesaikan masalah tersebut. Kajian 
ini bertujuan untuk membangunkan satu sistem penghantaran kuasa tanpa wayar 
berdasarkan transformer yang sesuai dalam mengecas peranti bioperubatan. Ini 
termasuk membangunkan sebuah litar pemancar, litar penerima, sepasang pemancar 
dan penerima gegelung dan pengubah. Kajian ini menunjukkan bahawa teknik 
gandingan magnet adalah teknik pengecasan tanpa wayar yang paling cekap dan 
memuaskan. Dalam usaha untuk mengurangkan kehilangan kuasa, satu teknik 
padanan impedans yang menggabungkan transformer langkah-naik dan transformer 
langkah-turun dalam pemancar dan penerima litar juga dicadangkan. Kajian ini 
juga membangunkan sistem tenaga pengecasan tanpa wayar yang tidak memancarkan 
radiasi berbahaya terhadap badan manusia. Frekuensi untuk sistem ini adalah 
dalam julat 700 kHz hingga 900 Hz yang selaras dengan peraturan ICNIRP. Tiga 
pasang pemancar berbentuk bulat dan penerima pasangan gegelung telah direka 
dengan saiz diameter 30cm, 40cm, dan 50cm. Bekalan kuasa dan penjana frekuensi 
disambungkan kepada litar pemancar dan osiloskop disambungkan ke beban litar 
penerima. Keputusan prestasi direkodkan menggunakan pelbagai dari 4 sentimeter 
hingga 1 10  sentimeter dan berdasarkan keputusan yang dijadualkan itu, wayarles 
sistem pemindahan kuasa pertengahan berjaya membekalkan kecekapan pemindahan 
sebanyak 60% pada jarak 35 cm bagi gegelung 30cm diameter, 62 % pada jarak 43 
cm bagi gegelung 40cm diameter dan 46% pada jarak 50cm untuk gegelung 50cm 
diameter.
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CHAPTER 1

INTRODUCTION

This chapter will briefly discussed about the background study, problem 
statement, objectives, scope of study and importance of the research for the mid
range wireless charging system for biomedical applications. Mid-range defined as the 
transmission range can be acheived more than one antenna diameter but less than or 
equal to 10 antenna diameter. The backgroud study describes the recent trend about 
the biomedical devices used for patients. The problem statement decribes the obstacles 
and limitations for recent technologies about biomedical devices. The objectives are 
set to tackle the problems. The scope of study will serve as a guideline when doing the 
research. The importance of the mid-range wireless charging system for biomedical 
devices is also presented.

1.1 BACKGROUND STUDY

A medical device may refer to any instrument or apparatus to be used on 
human beings for the purpose of diagnosis, prevention monitoring, treatment or 
alleviation of disease. Medical implant devices are getting popular and critical in 
today and future healthcare market due to the ability to locally stimulate internal 
organs and communicate the internal important data to the outside world (Li et a/., 
2012; RamRakhyani et al., 2011). Riding on the advances in integrated circuit 
(IC) technology today, the electronic system can be made completely implantable 
(Chandrakasan et al., 2008). For the past four decades, there is a significant 
development and implementation for implantable medical devices. The examples of 
medical implantable devices are pacemakers, defibrillators, circulatory assist devices, 
artificial hearts, cochlear implants, neuromuscular stimulators, and analog sensors 
(Sanni et al., 2012).These implantable devices or low-power biosensors serve as 
devices for identification, monitoring and treatment of patients (Fowler et a!., 2012;
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Zhu et al., 2011). Besides that, it can also perform therapeutic, prosthetic, and 
diagnostic functions (Liu et al., 2009b). Some research data show that the global 
medical device market yielded around $209 billion during year 2006.

However, these electronic devices are not self-powered. It is greatly depending 
on the electricity from the battery which is coupled together with the devices. Early 
implantable devices such as pacemakers are powered by small lithium ion batteries 
(Laskovski et al., 2009). Even though the battery is coupled together with the 
implanted devices is able to supply stable electrical energy, the limitation in energy 
storage is still hindering its application and durability (Hu et al., 2005). The internal 
battery has the disadvantages of limited life time, large volume and leakage possibility, 
hence it is not a preferable solution in this area of interest (Cha et al., 2012; Li et al., 
2012; Samad et al., 2006).

Devices such as the implanted extendable rod for the treatment of adolescent 
idiopathic scoliosis or as growing prosthesis for young patients with bone cancer, 
it requires several watts of electric power to drive the electric motor (Jiang et a I.,
2010). For this high power demand device, a more frequent recharging of battery 
or replacement is required. This increases the risk of operation. Otherwise, a 
transcutaneous power cord has to be made out from the patient’s skin in order to charge 
the devices. According to a research, there are about 40 percent of patients who are 
infected due to this opening and require re-hospitalization. In some extreme case, the 
patients might die from it. In order to reduce the fatality rate of patients, which is 
the objective of medication, a continuous supply of energy is crucial in order for the 
devices to operate continuously and reliably (RamRakhyani et a I., 2011; Zhu et a I.,
2011).

As a result, it is a meaningful study in order to power these implanted devices 
efficiently (Liu et al., 2009b; Si et al., 2007).Moreover, due to the space constraint, 
real-time energy supplying system can save a lot of space as well Laskovski et al. 
(2009). If these problems can be solved by getting rid of the cable, the human made 
devices can be a good alternative for the patients to recover.
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1.2 PROBLEM STATEMENT

As mentioned in the background study, the power supply for the implantable 
devices can only be obtained mainly through two processes, which are the battery 
replacement or via external power cord charging.

The energy supply is crucial in the functionality of biomedical devices. Hence, 
an efficient, continuous and stable supply of energy is required. These devices must 
receive energy supply externally or harvest the ambient energy. For non-implantable 
devices, batteries can be easily replaced or recharged. For the patient’s benefit, it is 
also not recommended to do it frequently. One of the examples is the behind-the- 
ear cochlear instrument which has to be charged everyday. However, the batteries 
in implantable devices can only be replaced or recharged by surgery. Therefore, 
an alternative solution such as wireless power charging may be a viable solution 
(Chandrakasan et al., 2008).

An alternative method to use is transcutaneous power cable. Generally, 
the percutaneous link across the body skin is used to recharge the internal battery 
(RamRakhyani et a I., 2011). However, it may pose infection risks to the patients and 
the wire is also somehow entangled and causes restriction in mobility (Samad et al., 
2006; Si et al., 2007).The power cord also restricts the patient to peform activities 
related to water. Since human is an individual which required motion and freedom, the 
constantly charging also make them have to stick to a place for certain amount of time 
periodically. These will cause low moblity and not productive for the patients to carry 
out their works.

So, if the electric supply for the implant devices can be solve, certainly it will 
make the biomedical implant devices more applicable and help to save more life.

1.3 OBJECTIVE

This research has proposed the use of wireless power charging technology to 
charge the battery of biomedical devices.The objectives for this research are outlined 
as follow:
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1. To develop a mid-range wireless power transmission system to charge the 
biomedical devices.

2. To design a transformer based wireless power transmission system.

3. To evaluate the safety performance of developed wireless power transfer system.

1.4 SCOPE

The area of interest of this research is limited to the following scope:

1. The research focuses on the development of transmitter circuit and receiver 
circuit. This include the transmitter and receiver coils pair design and the 
impedance matching for the system.

2. This wireless energy transfer system is only implemented for biomedical 
applications.

3. The viable range for charging the devices should be within lmeter.

4. The target power of biomedical devices is from 1 watt to 5 watt.

5. The range of frequency used should be lower than 1MHz

1.5 IMPORTANCE OF RESEARCH

This system is expected to contribute to the advancement of biomedical 
technology for more patients to benefit from it especially for those who need the 
biomedical devices to sustain their life. The increasing usability of cables for charging 
purposes towards the biomedical devices will limit the mobility of patients during 
the charging process. In addition, when replacing the batteries of some implantable 
biomedical devices in human body, it will increase risk of several infection during the 
operation surgery. Hence, the wireless power charging system is a better solution for 
those problems.



5

1.6 Thesis Organisation

Chapter 1 introduces the background of the study. It gives a brief introduction 
on the problems related to the biomedical devices. In addition, it also list out the 
objectives and the scope of this study.

Chapter 2 presentes the literature review for this research. It includes 
a history of recent wireless charging technology and its founder. Comparisons 
between three different techniques of wireless charging technologies, namely inductive 
transfer, magnetic resonant coupling and radio frequency energy transfer are described. 
Magnetic resonant coupling technique is used in this research and for further 
elaboration. The technical review on magnetic resonant coupling for two coil transfer 
system, four coil transfer systema and resonators are presented in this chapter. A 
short discussion on mid-range wireless charging system can improve patients life is 
presented in this chapter. The available evaluation methods are discussed based on 
the suitability and effectiveness and how the results are statistically compared is also 
introduced in this chapter.

Chapter 3 present the methodology used in this study. It describes the 
quality factor of transmitter and receiver coils pair being measured and fabricated, the 
impedance matching apply to the system to improved efficiency, the system machanism 
of the system works, and measurement, tabullation and verification of results.

Chapter 4 present the experiment set up for the study. It shows the procedures 
and preparations for the experiment and equipment used.

Chapter 5 presents the result and discussion section. It shows the quality factor 
measured for each different transmitter and receiver coils. It also compares the result 
from the experimental and simulation result and provides some discussions and also 
compares with the preformance current wireless technologies with others researches.

Chapter 6 summarises the conclusion and the contributions of this research. 
The future works are also presented at the end of this chapter.
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