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ABSTRACT 

Delta wing design is being used in aircraft to obtain high manoeuvre properties. 

The flow above the delta wing is complicated and dominated by a very complex vortex 

structure. This research investigates the effects of the propeller locations on the 

aerodynamic characteristics above a generic 55° sharp-edged non-slender delta wing 

Unmanned Aerial Vehicle (UAV) model. This research was performed by an 

experimental method. The experiments were conducted in a closed circuit Universiti 

Teknologi Malaysia-Low Speed Tunnel (UTM-LST) wind tunnel at wind speed of 20 

m/s and 25 m/s respectively. In this project, the propeller was located at three different 

locations at front, middle and rear of the wing. The experimental data highlights an 

impact of propeller locations on lift, drag, pitching moment and vortex characteristic 

of the UAV model. Rear propeller configuration recorded the highest lift generation. 

Meanwhile, middle propeller configuration has the highest drag with increment by 2% 

to 15%. The results also show that the propeller advance ratio plays important roles in 

development of the primary vortex above the delta-winged model. The higher 

propeller advance ratio would decrease the development of the vortex on the wing, 

consequently limiting the lift generation and stall condition in which are 

disadvantageous for aircraft aerodynamic characteristics. The lift coefficients decrease 

by 7% when the propeller advance ratio is increased from 0.98 to 1.20.  Lastly, suction 

effect from the propeller has improved the vortex properties better than blowing 

mechanism in which is beneficial for the delta-winged UAV propeller selection. 
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ABSTRAK 

Penggunaan reka bentuk sayap delta diaplikasikan pada pesawat bagi 

memperoleh olah gerak yang tinggi. Penggunaan sayap delta ini dapat dimanfaatkan 

dengan penghasilan daya angkatan yang lebih baik berbanding dengan reka bentuk 

pesawat konvensional. Walau bagaimanapun, aliran udara di atas permukaan sayap 

delta ini sangat kompleks kerana reka bentuk ini mempunyai aliran pusaran yang 

terhasil di sisi sayap. Oleh itu, kajian ini dibuat bagi mengenal pasti kesan lokasi kipas 

yang diletakkan pada model Pesawat Udara Tanpa Pemandu (UAV) dari segi aspek 

aerodinamik dan corak perubahan aliran pusaran di atas permukaan sayap delta. Model 

UAV yang digunakan dalam kajian ini merupakan sayap delta 55° bersisi tajam. 

Kajian dijalankan secara eksperimen menggunakan terowong angin litar tertutup 

Universiti Teknologi Malaysia-Low Speed Tunnel (UTM-LST) pada kelajuan angin 

20 m/s dan 25 m/s. Posisi kipas diletakkan di tiga tempat berbeza iaitu di hadapan, 

tengah dan belakang model. Hasil dapatan kajian difokuskan terhadap kesan lokasi 

kipas terhadap daya angkatan, daya heretan, momen anggulan dan ciri vorteks. Data 

daripada eksperimen mendapati pemasangan kipas terhadap model UAV 

mempengaruhi daya angkatan, daya heretan dan momen anggulan model pesawat. 

Kipas yang dipasang di belakang model mencatatkan nilai pekali daya angkat yang 

tertinggi. Manakala kipas yang dipasang di tengah model mencatatkan daya heretan 

yang tertinggi dengan peningkatan sebanyak 2% hingga 15%. Hasil dapatan kajian 

juga menunjukkan bahawa nisbah mara kipas memainkan peranan penting dalam 

pembentukan aliran pusaran di atas sayap delta. Nisbah mara kipas yang tinggi akan 

mengurangkan pembentukan aliran pusaran di atas sayap delta sekaligus mengehadkan 

penghasilan daya angkatan dan pendakian pesawat. Pekali daya angkat didapati 

berkurangan sebanyak 7% apabila nisbah mara kipas dinaikkan dari 0.98 ke 1.20. 

Akhir sekali, kesan penggunaan kipas terhadap aliran pusaran menunjukkan bahawa 

mekanisme sedutan memberikan kesan yang lebih ketara berbanding dengan 

mekanisme tiupan. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of the Study 

Unmanned Aerial Vehicle (UAV) is an aerial vehicle that operates without a 

pilot on board. UAVs can be operated by the pilot at the ground control station 

(controlled aircraft) or autonomous flying by preprogramed flight routes (autopilot 

system). There are numerous types of UAVs available with various shapes and sizes. 

UAVs exist in many types with different capabilities for the user requirements (Bento, 

2008). Development of UAV was instigated by the piloted aircrafts evaluations (Koma 

et al., 2008). The primary advantage of the UAV over piloted aircraft is portability. 

UAV is easily to be stored, transported and launched in time-sensitive manner. Thus, 

this made the operational cost of UAVs are cheaper compared to conventional aircraft. 

UAVs can overcome the limitations of piloted aircraft such that unnecessary risk 

exposure towards pilots and air crews during rescue missions or surveillance 

operations. As UAVs are operated remotely, rescue and surveillance activities in 

dangerous and non-accessible area can be performed without risking more lives 

(Tajima et al., 2013; Nakashima et al., 2014). Aircraft with smaller design is becoming 

essential to be used for limited period missions for both military and civil purposes 

(Koma et al., 2008). Development of battery, wireless and Micro-Electromechanical 

Systems (MEMS) have enable UAVs with increased capability at lower cost and 

smaller in size (Hall et al., 2009).  The current smallest UAV is Robo-fly shown in 

Figure 1.1 is having insect imitation (entomopters) only weighing 106mg and capable 

of search and rescue missions (Griffiths, 2014).  UAVs becoming more favourable as 

its special capability to operate lower than crewed aircraft. Furthermore, UAVs are 
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capable to achieve a higher elevation than any land vehicles. The usage of UAVs can 

be seen in 1940 when 15,000 units of radio controlled target drones were sold to United 

States military for anti-aircraft training for World War II by Reginald Danny (Dillow, 

2014). Currently, large and small companies are developing and designing UAVs 

(Shafer & Green, 2010). Large companies conducting research on the UAVs design 

by using computational fluid dynamics (CFD) and wind tunnel testing, enabling them 

to have better potential design before flight testing. 

 

Figure 1.1: Robo-fly UAV (Griffiths, 2014) 

Numerous different groups have suggested reference standards for UAVs. One 

of them is the European Association of Unmanned Vehicle Systems (EUROVS). The 

EUROVS had classified UAVs based on several parameters such flight endurance, 

altitude and size (Bento, 2008).  Table 1.1 shows the classification of UAVs created 

by EUROVS. 
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Table 1.1: Classification of UAVs by EUROVS (Bento, 2008) 

 Category 

(acronym) 

Maximu

m Take 

Off 

Weight 

(kg) 

Maximu

m Flight 

Altitude 

(m) 

Endura

nce 

(hours) 

Data Link 

Range 

(km) 

Micro/ 

Mini 

UAVs 

Micro (MAV) 0.10 250 1 <10 

Mini <30 150-300 <2 <10 

Tactical 

UAVs 

Close Range 

(CR) 

150 3,000 2-4 10-30 

Short Range 

(SR) 

200 3,000 3-6 30-70 

Medium Range 

(MR) 

150-500 3,000-

5,000 

6-10 70-200 

Long Range 

(LR) 

- 5,000 6-13 200-500 

Endurance 

(ER) 

500-1,500 5,000-

8,000 

12-24 >500 

Medium 

Altitude, Long 

Endurance 

(MALE) 

1,000-

1,500 

5,000-

8,000 

24-48 >500 

Strategic 

UAVs 

High Altitude, 

Long 

Endurance 

(HALE) 

2,500-

12,500 

15,000-

20,000 

24-48 >2,000 

Special 

Task 

UAVs 

Lethal (LET) 250 3,000-

4,000 

3-4 300 

Decoys (DEC) 250 50-5,000 <4 0-500 

Stratospheric 

(Strato) 

TBD 20,000-

30,000 

>48 >2,000 

Exo-

stratospheric 

(EXO) 

TBD >30,000 TBD TBD 

In the past, UAVs had been used mostly for the military purposes. Currently, 

UAVs is starting to be used in scientific, commercial and public safety tasks (Bento, 

2008). UAVs purpose to carry out civil missions’ potential was discovered when 

UAVNET (UAV Network) project is launched in October 2001. This is followed by 

another two projects, USICO (UAV Safety Issues for Civil Operation) and CAPECON 

(Civil UAV Applications and Economic Effectivity and Potential Configuration 

Solutions) in May 2012 (Smith & Rajendran, 2014). Dillow (2014) stated the usage of 

UAVs for non-military purposes have been escalating in developed countries such as 
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Japan, France, United Kingdom and Australia. UAVs are a potential device to be used 

in various applications such as in agriculture, map building, traffic surveillance, 

construction, film production, search and rescue mission and weather forecasting. For 

the meteorology field, UAV is used to observe development of storms (Handwerk, 

2013). From the program, the valuable surveillance in stormy area can be captured by 

the UAV which cannot be performed by the manned plane. In topography field, 

Sensefly and Drone Adventures promotes usage of UAV for civil application by 

mapping Matterhorn mountain, which is located on the border between Switzerland 

and Italy (Carrol, 2013). For agriculture purposed, UAV cameras can be used to 

monitor growth of plants at specific field section. Current UAV is equipped with 

infrared camera enabling plant health observation based on the photosynthesis 

efficiency (Handwerk, 2013). One of the flying UAV used for civil application is 

LA100 which is shown in Figure 1.2. LA100 is produced by Lehmann Aviation Ltd 

and having 92 cm wingspan and 1.25 kg in weight. LA100 is designed for civil 

applications such as reconnaissance, security, mapping, survey and monitoring. The 

UAVs are able to take still aerial images and real-time videos.  

 

Figure 1.2: LA100 UAV (Lehmann Aviation, 2014) 

 

 

 

 

 

92 cm
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1.2 Delta-Winged UAV 

The advancement of the technology has triggered essential of aircraft that 

capable of higher speed and manoeuvre. Delta wing configurations are suitable for 

both supersonic and subsonic aircraft (Pevitt & Alam, 2014). The delta wing design 

initially was carried out in Germany in the early 1940s (Whitford, 1987). After the 

Allied won the Second World War, delta wing design was appeared on drawing for 

major aircraft design. The delta wing is having triangle appearance on wing plan and 

is named after Greek letter delta (Δ) as their similar shape (Teli et al., 2014). The delta 

wing configuration can be divided into slender and non-slender wing based on their 

swept angle (Λ). Slender wing having very high swept angle which are Λ>60°. Delta 

wing is categorised in fixed-wing UAVs alongside with flying wing class and blended 

winged body (BWB) class. There is different type of delta wings, which are standard 

delta, tailed delta, cropped delta, compound delta, cranked arrow, ogival delta, lambda 

delta and diamond wing. The delta wing configurations are shown in Figure 1.3. 

(a) Standard 

delta 

(b) Tailed Delta (c) Cropped delta 
 

(d) Compound 

delta 

(e) Cranked 

arrow 

(f) Ogival delta (e) Lambda 
 

(f) Diamond 

Figure 1.3: Delta wing configurations (Pevitt & Alam, 2014) 
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Currently, delta wing design is implanted in UAVs application (Tricoche et al., 

2004). Delta planform is favourable in the UAVs design because of the excellent 

properties at a higher angle of attack (Polhamus, 1966). Delta wing configuration in 

UAV shows aerodynamic advantages over conventional design in power efficiency 

and lower ratio of wetted area to volume (Tajima et al., 2013). Delta-winged UAV 

design is always simple and robust. Thus, the delta wing aircraft is having less complex 

design and having high durable design accompanied by extra internal volume for 

power source and aircraft system. Normally, delta wing UAV is stronger than a similar 

swept wing UAV. The delta winged UAV can be built stronger than swept wing 

aircraft as the spar attaches with the fuselage afar in front of the centre of gravity. Since 

delta wing aircraft having simple design, it is likely to have less impact during crash 

and could minimise the possible damage that may occur. The manufacturing cost of 

the delta wing could be reduced as it need less materials. Figure 1.4 shows several 

existing flying delta wing UAVs.  

 

Figure 1.4: Several examples of delta winged UAVs (RCGroups.com, 2014; 

SkyHighHobby.com, n.d.) 
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1.3 Research Objective 

The aim of this project is to investigate the effects of propeller locations on the 

aerodynamic and vortex characteristics above sharp-edged delta wing UAV. In order 

to achieve the said objectives, the research will; 

(i) Measure the aerodynamic characteristics of delta-winged UAV with and 

without rotating propeller.  

(ii) Investigate the effects of propeller locations on the vortex characteristics 

of the delta-winged UAV model. 

(iii) Investigate the effects of advance ratio for all propeller configurations on 

the delta-winged UAV. 

1.5 Scope of the Research 

As the main objective of this project is to investigate the effects of propeller 

locations on the vortex properties above non-slender sharped-edge delta wing, the 

scopes of this research are divided into four stages: 

 

(i) Literature review on delta wing UAV and delta wing flow topology. 

(ii) Model design and fabrication of the UAV model in standard delta category. 

(iii) Wind tunnel experiment of the model without the propeller, called as clean 

wing configuration. 

(iv) Wind tunnel experiment of the model with several propeller locations. In 

this project, the locations of the propeller were set at three stations: 

 In front of the wing. 

 In the middle part of the wing. 

 In the rear part of the wing. 

It has been decided that the motor speed was set at 6,000 rpm since most of the UAVs 

are flying at this speed. 
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1.6 Significance of the Research 

This research would provide a better insight into the aerodynamic 

characteristic and the vortex properties above delta-winged UAV under the effects of 

rotating propeller installed on the wing at three locations, i.e. front, middle and rear. 

The speed of the motor was set at 6,000 rpm based on the standard range of propeller 

speed in the same category of UAV. Two measurements techniques which are steady 

balance data and surface pressure measurement are used to evaluate the UAV 

performance.  
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