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ABSTRACT 

In recent years, combinational optimization issues are introduced as critical 

problems in clustering algorithms to partition data in a way that optimizes the 

performance of clustering. K-means algorithm is one of the famous and more popular 

clustering algorithms which can be simply implemented and it can easily solve the 

optimization issue with less extra information. But the problems associated with K-

means algorithm are high error rate, high intra cluster distance and low accuracy. In 

this regard, researchers have worked to improve the problems computationally, 

creating efficient solutions that lead to better data analysis through the K-means 

clustering algorithm. The aim of this study is to improve the accuracy of the K-

means algorithm using hybrid and meta-heuristic methods. To this end, a meta-

heuristic approach was proposed for the hybridization of K-means algorithm scheme. 

It obtained better results by developing a hybrid Genetic Algorithm-K-means (GA-

K-means) and a hybrid Partial Swarm Optimization-K-means (PSO-K-means) 

method. Finally, the meta-heuristic of Genetic Algorithm-Partial Swarm 

Optimization (GAPSO) and Partial Swarm Optimization-Genetic Algorithm 

(PSOGA) through the K-means algorithm were proposed. The study adopted a 

methodological approach to achieve the goal in three phases. First, it developed a 

hybrid GA-based K-means algorithm through a new crossover algorithm based on 

the range of attributes in order to decrease the number of errors and increase the 

accuracy rate. Then, a hybrid PSO-based K-means algorithm was mooted by a new 

calculation function based on the range of domain for decreasing intra-cluster 

distance and increasing the accuracy rate. Eventually, two meta-heuristic algorithms 

namely GAPSO-K-means and PSOGA-K-means algorithms were introduced by 

combining the proposed algorithms to increase the number of correct answers and 

improve the accuracy rate. The approach was evaluated using six integer standard 

data sets provided by the University of California Irvine (UCI). Findings confirmed 

that the hybrid optimization approach enhanced the performance of K-means 

clustering algorithm. Although both GA-K-means and PSO-K-means improved the 

result of K-means algorithm, GAPSO-K-means and PSOGA-K-means meta-heuristic 

algorithms outperformed the hybrid approaches. PSOGA-K-means resulted in 5%-

10% more accuracy for all data sets in comparison with other methods. The approach 

adopted in this study successfully increased the accuracy rate of the clustering 

analysis and decreased its error rate and intra-cluster distance. 
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ABSTRAK 

Dalam beberapa tahun kebelakangan ini, isu-isu pengoptimuman gabungan 

telah dikenal pasti sebagai masalah kritikal dalam pengelompokan algoritma bagi 

pembahagian data dengan cara yang mengoptimumkan prestasi pengelompokan. 

Algoritma K-min merupakah salah satu algoritma pengelompokan yang terkenal dan 

popular. Algoritma ini mudah dilaksanakan dan boleh menyelesaikan isu-isu 

pengoptimuman walau dengan menggunakan maklumat yang sedikit. Namun, 

masalah yang timbul dengan pelaksanaan algoritma K-min adalah kadar ralat yang 

tinggi, jarak antara kluster yang tinggi, dan juga kadar ketepatan yang rendah. Para 

penyelidik telah berusaha keras dalam memperbaiki masalah-masalah ini secara 

berkomputer, mewujudkan penyelesaian yang berkesan yang membawa kepada 

analisis data yang lebih baik melalui pengelompokan algoritma K-min. Tujuan kajian 

ini adalah untuk meningkatkan ketepatan K-min menggunakan kaedah algoritma 

hibrid dan meta-heuristik. Bagi tujuan ini, pendekatan meta-heuristik dicadangkan 

untuk penghibridan skim algoritma K-min. Ia menghasilkan keputusan yang lebih 

baik dengan membangunkan kaedah hibrid Algoritma Genetik-K-min (GA-KM) dan 

Pengoptimuman Separa Kelompok-K-min (PSO-KM). Akhirnya, meta-heuristik 

daripada Algoritma Genetik-Pengoptimuman Separa Kelompok (GAPSO) dan 

Pengoptimuman Separa Kelompok-Algoritma Genetik (PSOGA) melalui algoritma 

K-min yang telah dicadangkan. Kajian ini mengaplikasikan pendekatan metodologi 

untuk mencapai matlamat dalam tiga fasa. Pertama, ia membangunkan GA hibrid 

berasaskan algoritma K-min melalui algoritma lintasan baru berdasarkan pelbagai 

sifat untuk mengurangkan bilangan kesilapan dan meningkatkan kadar ketepatan. 

Kemudian, PSO hibrid berasaskan algoritma K-min yang diilhamkan oleh fungsi 

pengiraan baru berdasarkan pelbagai domain untuk mengurangkan jarak antara 

kelompok dan meningkatkan kadar ketepatan. Akhirnya, dua algoritma meta-

heuristik iaitu algoritma GAPSO dan PSOGA diperkenalkan melalui kombinasi 

algoritma yang dicadangkan untuk meningkatkan bilangan jawapan yang betul dan 

meningkatkan kadar ketepatan. Pendekatan ini telah dinilai menggunakan enam set 

data integer piawai yang disediakan oleh University of California Irvine (UCI). 

Dapatan kajian ini mengesahkan bahawa pendekatan pengoptimuman hibrid 

meningkatkan prestasi pengelompokan algoritma K-min. Walaupun kedua-dua GA-

KM dan PSO-KM memberi hasil lebih baik daripada algoritma K-min, algoritma 

GAPSO dan PSOGA meta-heuristik mengatasi pendekatan hibrid. PSOGA-K-min 

telah menghasilkan kadar ketepatan sehingga 5%-10% untuk semua set data 

berbanding dengan kaedah-kaedah yang lain. Pendekatan yang diambil dalam kajian 

ini berjaya meningkatkan kadar ketepatan analisis pengelompokan dan menurunkan 

kadar kesilapan dan jarak di antara kelompok.  
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CHAPTER 1  

1 INTRODUCTION 

1.1 Overview 

One of the important and constantly developing issues in the world of science 

is Computer Science (CS), which is the practical and scientific approach used for 

computation and its related applications. CS studies systematizes the mechanization, 

feasibility, expression, and structure of methodical algorithms that underlie the 

acquisition, processing, representation, storage, access to, and communication of 

information. A significant part of CS is Artificial Intelligence (AI), which includes 

several subdivisions, e.g., Machine Learning (ML), data mining, and pattern 

recognition. Among these, ML is of great importance in the field of AI.  

ML is a subfield of AI that addresses the construction of systems that are 

capable of learning from data rather than simply following programmed instructions 

(Ackerman, 2000; Ayodele, 2010). Additionally, this field is strongly tied with 

optimization and statistics, delivering both theory and method to the field. ML is 

applied to various computing tasks in which it is not feasible to design and program 

algorithms that are explicit and rule based (Gullapalli & Brungi, 2015). There is a 

conflation among the concepts of ML, pattern recognition, and data mining 

(Chakrabarti, 2003; Ayodele, 2010). 

ML applied to tasks falls into three different types: supervised learning, semi-

supervised learning, and unsupervised learning. The supervised learning refers to 

situations in which a computer is provided with both example inputs and desired 
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outputs, presented by a "teacher"; it aims at learning a general rule that maps inputs 

to outputs. The supervised learning is a machine learning task through which a 

function is inferred from labeled training data (Chapelle et al., 2006; Huang et al., 

2006; Settles, 2010). A example of supervised learning is classification that is 

applied to solving problems. On the other hand, in semi-supervised learning, labeled 

and unlabelled examples are combined for the purpose of generating an appropriate 

function or classifier (Zhu & Goldberg, 2009). The unsupervised learning-based 

algorithms are applied to unlabelled inputs in cases where there is not a known 

desired output. This aims at discovering structures in data through, for example, 

cluster analysis, rather than generalizing a mapping from input to output (Jain et al., 

2000; Ayodele, 2010; Peuquet et al., 2015).  

In unsupervised learning, the learning algorithm is not given any label; rather, 

it is left on its own to cluster similar inputs, perform density estimates, or do the 

projection of high-dimensional data, the latter of which can be effectively visualized 

(Berkhin, 2006). Unsupervised learning can be considered as a goal in itself or a 

means that can be used to achieve a particular end (Tuytelaars et al., 2010). An 

instance of unsupervised learning is topic modeling through which a list of human 

language documents is given to a program, and the problem is to explore which 

document covers similar topics. Clustering is another good example of unsupervised 

learning in which the clustering is used to solve problems. 

In clustering or cluster analysis, a set of objects are grouped. In this method, 

objects belonging to one group are more similar to each other compared to objects 

belonging to other groups (Lavanya et al., 2015). This is considered as the most 

important task of exploratory data mining; additionally, it is known as a general 

technique for statistical data analysis that is employed in several fields of study such 

as image analysis, machine learning, bioinformatics, information retrieval, and 

pattern recognition (Jain, 2010). Cluster analysis is not considered as a specific 

algorithm per se; rather, it is a general task to be solved. This can be obtained by 

algorithms that are significantly different in their definition of what forms a cluster 

and how to find them in an efficient way. Popular conceptions of clusters define 

them as groups whose members have small distances, intervals, or particular 
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statistical distributions, and dense areas of data space (Jain & Maheswari, 2012). 

Clustering is a technique of a great importance, which is applied to several fields 

such as information retrieval and knowledge discovery. Using this technique, 

scholars are capable of finding related information faster. Therefore, researchers date 

with new findings in their own field of study (Fayyad et al., 1996).  Clustering is a 

process through which objects are grouped or divided into clusters; the purpose of 

this process is to place objects that are similar to one another in one cluster and place 

dissimilar ones within other clusters (Jiang et al., 2004). Grouping is carried out in 

terms of predefined distance or similarity measure (Berkhin, 2006). At present many 

studies apply clustering to several areas of investigation, such as classification, 

decision making, information extraction, and pattern analysis (Xu & Wunsch, 2005). 

Clustering is divided into a number of models, including connectivity models, 

distribution models, and centroid models (Xu & Wunsch, 2005; Berkhin, 2006).  

K-means clustering, originating from signal processing is a method of vector 

quantization (Al-Jarrah et al., 2015). This is commonly applied to cluster analysis in 

data mining. The aim of K-means clustering is partitioning n observations into K 

clusters; in this case, each observation belongs to the cluster that has the nearest 

mean, which serves as a cluster’s prototype (Xu & Wunsch, 2005; Dix, 2009; Jain, 

2010). The problem has been proved to an NP-hard problem, though a number of 

efficient heuristic algorithms that have been proposed, which quickly converge to a 

local optimum. Generally, such algorithms are similar to the expectation-

maximization algorithm for mixtures of Gaussian distributions through an iterative 

refinement approach that is adopted by both algorithms. In addition, both algorithms 

employ cluster centers for modeling the data. Nevertheless, in the expectation-

maximization mechanism, clusters are allowed to have various shapes, whereas K-

means clustering usually finds clusters of similar spatial extent (Xu & Wunsch, 2005; 

Celebi et al., 2013) . In the K-means clustering algorithms, there are a number of 

shortages and defects that should be improved.  

There are different methods to enhance and improve K-means clustering 

algorithm. One of these methods is to use the optimization method, in which a best 

element is selected from some of the set of available alternatives. Two important 
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areas pertaining to optimization methods are the hybrid approach and the meta-

heuristic approach.   

In a hybrid algorithm, two or more algorithms are combined to solve a 

particular problem. A hybrid algorithm is an algorithm that combines two or more 

other algorithms that solve the same problem, either choosing one, or switching 

between them over the course of the algorithm. This is generally done to combine 

desired features of each, so that the overall algorithm is better than the individual 

components. Over the course of the hybrid algorithm, one of the algorithms is 

chosen, which depends on the data, or it is switched between them (Maringer & 

Kellerer, 2003; Chiarandini et al., 2006). The purpose of this procedure is to combine 

the desired features of each algorithm, so that the hybrid algorithm could perform 

better compared to the individual components (Coello et al., 2002; Van den Bergh & 

Engelbrecht, 2004).  Because of the shortcomings that exist in the K-means 

clustering algorithm, it can be optimized when using in a hybrid algorithm. Two 

algorithms that are mostly applied to hybrid algorithms are Particle Swarm 

Optimization (PSO) and the Genetic Algorithm (GA). Given that these algorithms 

have no label to solve the problem and they do not have additional guides, they can 

be applied to improvement of K-means clustering algorithm performance. 

GA is a search heuristic that mimics the natural selection process. This is 

generally employed for generating practical solutions to search and optimization 

problems (Mitchell, 1998; Hao et al., 2015). GAs are subsets of the Evolutionary 

Algorithms (EA) that apply solutions to optimization problems by means of 

techniques that are inspired by natural evolution, such as selection, mutation, 

inheritance, and crossover (Whitley, 1994; Kumar et al., 2010). Due to the good 

performance of the GAs in optimization problems, it can form a hybrid algorithm 

with K-means clustering algorithms. This strategy can remove some of the 

drawbacks of K-means clustering algorithms. 

On the other hand, PSO is an optimization algorithm that is globally used to 

address problems wherein a best solution can be denoted as a surface or point in a 

space with n dimensions. In this space, hypotheses are plotted  and seeded with a 
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communication channel between the particles as well as an initial velocity (Kennedy, 

1997; Shi & Eberhart, 1998; Urade & Patel, 2012). Next, particles move all the way 

through the solution space. Then, after each time step they are assessed based on 

some fitness criterion (Robinson & Rahmat-Samii, 2004). Over time, particles are 

speeded up toward the particles positioned in their own communication grouping, 

which are with better fitness values. The most important advantage of such an 

approach over other global minimization strategies is that the huge number of 

members making up the particle swarm make this technique impressively flexible to 

the local minima problem (Sadeghierad et al., 2010; Shakerian et al., 2011). Due to 

the good performance of the PSO algorithm in the optimization, it can form a hybrid 

algorithm together with the K-means clustering algorithm. This can eliminate some 

disadvantages of the K-means clustering algorithm. 

The heuristic technique has been designed to solve problems better in 

artificial intelligence, computer science, and mathematical optimization in cases 

where traditional methods work too slowly, or to find an approximate solution in 

cases in which the traditional methods cannot find any appropriate solution. This can 

be obtained through trading optimality, accuracy, completeness, or precision for 

speed (Renner & Ekárt, 2003).  

Additionally, a meta-heuristic is a higher-level procedure that has been 

proposed to find generate, or choose a lower-level procedure or heuristic that can 

provide an appropriate solution to an optimization problem, in particular one with 

incomplete information or a limited capacity of computation in mathematical 

optimization and computer science (Blum & Roli, 2003; Bianchi et al., 2009; Blum 

et al., 2011). Meta-heuristics are able to make few assumptions in regard to the 

optimization problem that is being solved; therefore, they can be practically 

employed as a solution to various problems. In comparison with the iterative 

methods and optimization algorithms, meta-heuristics cannot guarantee a globally 

optimal solution to some classes of problems (Blum & Roli, 2003). Several meta-

heuristics put into practice some forms of stochastic optimization in such a way that 

the solution is dependent on the set of generated random variables (Bianchi et al., 

2009). Through searching among several feasible solutions, meta-heuristics is 
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capable of finding appropriate solutions with less computational effort compared to 

simple heuristics, iterative methods, or algorithms (Blum et al., 2011). Accordingly, 

meta-heuristics can be considered as a practical approach to optimization problems 

(Bianchi et al., 2009; Blum et al., 2011). Generally, if two different algorithms are 

combined for solving a particular problem, the method is called a hybrid approach. 

However, if more than two algorithms are combined for solving a problem or several 

heuristic algorithms are combined for solving problem, the method is called a meta-

heuristic approach. A hybrid of the GA algorithm and K-means clustering algorithm 

has advantages for good clustering, and a hybrid of the PSO algorithm and the K-

means clustering algorithm has other advantages. It can be combined with the 

methods mentioned above in order to obtain an algorithm that combines the 

advantages of both algorithms. The result will be a meta-heuristic approach, the 

result of which is better than the previous method for clustering data. 

In this research, the proposed algorithms of a hybrid of the Improved Genetic 

Algorithm in K-means (I-GA-KM), a hybrid of the Improved Particle Swarm 

Optimization in K-means (I-PSO-KM), a meta-heuristic of the Genetic Algorithm 

and Particle Swarm Optimization in K-means (GAPSO-KM), and a meta-heuristic of 

Particle Swarm Optimization and Genetic Algorithm in K-means (PSOGA-KM) are 

proposed for real and binary data. The proposed algorithms are evaluated using the 

standard data sets and used for developing K-means algorithm. In this thesis the data 

was collected from University of California Irvine (UCI) standard data set in all 

experiments and all proposed algorithms. It used six integer data sets including 

Balance, Blood, Breast, Iris, Pima and Wine. 

1.2 Problem Background 

For the first time, the term "k-means" was introduced by James MacQueen in 

1967 (MacQueen, 1967; Gayathri et al., 2015); however, the idea originally belonged 

to Hugo Steinhaus (Steinhaus, 1956). Stuart Lloyd was pioneer in proposing the 

standard algorithm in 1957. It was applied as a technique to pulse-code modulation; 

however, it was not published until 1982 (Lloyd, 1982). In 1965, the same method 
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was published by Forgy, which is sometimes named Lloyd-Forgy (Forgy, 1965). A 

more efficient version was published by (Hartigan & Wong, 1979).  

A set of observations (x1, x2, …, xn) is given to the K-means clustering 

algorithm, in which each observation is a d-dimensional real vector. The aim of the 

K-means clustering is partitioning the n observations into K (≤ n) sets S = { S1, S2, 

…, Sk } in order to reduce the Within-Cluster Sum of Squares (WCSS) as far as 

possible (Patel & Sinha, 2010; Ramamurthy & Chandran, 2011; Singh et al., 2011). 

The standard K-means algorithm makes use of an iterative refinement technique. 

Because of its ubiquity, it often is known as a K-means algorithm; it is also named 

Lloyd's algorithm, particularly in the computer science community. When an initial 

set of K means m1,…,mk is given to the algorithm, it proceeds through alternating 

between two steps: the assignment step and the update step (Patel & Sinha, 2010). In 

the former, each observation is assigned to the cluster to which its mean yields the 

least WCSS. As the sum of squares is squared Euclidean distance, this mean 

intuitively the "nearest" one (Utro, 2011). In the latter, the new means are calculated 

to be centroids of observations in new clusters. Initialization methods for the K-

means algorithm fall into two methods, namely Forgy and Random Partition (Faber, 

1994; Redmond & Heneghan, 2007). 

In the Forgy method, K observations are randomly selected from among the 

data set and used as the initial means (Forgy, 1965; Hamerly & Elkan, 2002). 

Hamerly et al., (Hamerly & Elkan, 2002) state that, in general, the Random Partition 

method is preferable for algorithms such as fuzzy K-means and the K-harmonic 

means. However, in case of standard K-means algorithms and expectation 

maximization, the Forgy method of initialization is considered preferable (Forgy, 

1965; Shirwaikar & Bhandari, 2013). Since this is a heuristic algorithm, there is not 

any guarantee that it will be converged to global optimum, and the results may be 

dependent on the initial clusters. Since this is typically a very fast algorithm, it is 

commonly run for multiple times with various starting conditions(Gariel et al., 

2011). 
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Krovi is the pioneer in investigating the potential applicability of GAs to 

clustering (Krovi, 1992; Sheikh et al., 2008). A new hybrid GA introduced by K. 

Krishna and M. N. Murty attempted to find a globally optimal partition of a certain 

data into a defined number of clusters. The idea behind Fast Genetic K-means 

Algorithm (FGKA) (Lu et al., 2004a; Sheikh et al., 2008) came from GKA; however, 

FGKA had a number of improvements compared to GKA. The experiments 

conducted in this area indicated that, when K-means algorithm are converted to a 

local optimum, both GKA and FGKA always finally converge to the global 

optimum, even though FGKA runs with a much higher speed compared to GKA. 

Incremental Genetic K-means Algorithm (IGKA) (Lu et al., 2004b) was actually an 

extension to FGKA. Jie et al. (Jie et al., 2004) proposed a new clustering algorithm 

for the mixed data sets through the modification of the common cost function and 

trace of the within cluster dispersion matrix. Liu et al. (Liu et al., 2004) introduced 

HGA-clustering that was a hybrid genetic-based clustering algorithm in order to find 

the appropriate clustering of data sets.  

To design the dissimilarity measure, Genetic Distance Measure (GDM), 

which was a genetic algorithm, was proposed in a way to improve the K-modes 

algorithm performance (Chiang et al., 2006). Demiriz et al. (Demiriz et al., 1999) 

designed a semi-supervised clustering algorithm that was a combination of the 

benefits of unsupervised and supervised learning methods. The K-means Fast 

Learning Artificial Neural Network (KFLANN) that was introduced by Xiang and 

Phuan (Xiang & Phuan, 2005) was a small neural network with two types of 

parameters: vigilance, μ, and the tolerance, δ. Single Program Multiple Data 

algorithm (SPMD) proposed by Du et al. (Du et al., 2001) combined GA with uphill 

that was local searching algorithm. A hybrid of GA and a Weighted K-Means 

Algorithm (WKMA) was proposed by Fang-Xiang et al (Wu, 2008) and termed 

Genetic Weighted K-means Algorithm (GWKMA). A hybrid GA-based clustering 

(HGACLUS) schema introduced by Pan et al. (Pan et al., 2003) combined merits of 

Simulated Annealing. It was presented to find an optimal or near-optimal set of 

medoids. Katari et al. (Katari et al., 2007) introduced data clustering by means of 

improved IGA to which an efficient method of crossover and mutation was applied 

(Sheikh et al., 2008).  
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Omran et al. (Omran et al., 2002) designed PSO for clustering through a 

straightforward implementation. Their algorithm used a fixed clusters number and 

employed PSO in order to search for these clusters’ optimal centroids. Using PSO, 

Van der Merwe and Engelbrecht (Van der Merwe & Engelbrecht, 2003) introduced 

two new approaches to cluster data. They demonstrated how PSO could be employed 

for finding the centroids of a user-specified number of clusters. Fun and Chen (Chen 

& Ye, 2004) designed PSO-clustering, a technique based on the particle swarm 

optimization algorithm. They applied the particle swarm optimization to searching 

automatically for the center of a cluster in the arbitrary dataset. Cui et al. (Cui et al., 

2005) proposed a PSO document clustering algorithm, which performed a global 

search within the entire answer space. Cohen and de Castro (Cohen & de Castro, 

2006) presented a proposal on data clustering, which was based on the PSO 

algorithm, which was adapted to place prototypes within regions of the space that 

denote the natural clusters of input dataset. Abraham et al. (Abraham et al., 2007) 

proposed a method to cluster the complex and linearly non-separable datasets, with 

no prior knowledge regarding the number of naturally occurring clusters. Their 

method was based on an improved version of PSO algorithm. Esmin et al. (Esmin et 

al., 2008) introduced two new data clustering approaches by means of the PSO 

algorithm. This could be employed for finding centroids of a user-specified number 

of clusters. Sharma and Omlin (Sharma & Omlin, 2009) proposed the use of an 

adaptive heuristic PSO algorithm to find cluster boundaries directly from code 

vectors obtained from Self-Organizing Map (SOM). Dong and Qi (Dong & Qi, 

2009b) introduced a new clustering algorithm based on PSO (Abul Hasan & 

Ramakrishnan, 2011; Sethi & Mishra, 2013; Bollmann et al., 2015). Therefore, to 

enhance the performance of previous hybrid methods, four algorithms are proposed 

in this study. Among them, two algorithms are designed to improve GA-K-means 

and PSO-K-means algorithm; and the other two algorithms are meta-heuristics 

algorithms obtained from the two previous algorithms with meta-heuristic method. 

Attempts have been made to overcome with disadvantages. The last two algorithms 

are named Genetic Algorithm-Particle Swarm Optimization-KM (GAPSO-KM) and 

Particle Swarm Optimization-Genetic Algorithm-KM (PSOGA-KM), which can be 

applied to clustering dataset.  



10 

1.3 Problem Statement  

Traditional optimization algorithms cannot provide proper results for 

clustering problems with high error, high intra cluster distance and low accuracy rate 

since the result is sensitive to the selection of initial cluster centers and this 

converges simply to local optima. In recent years, to solve the data clustering 

problem, several new approaches have been introduced, inspired from biological 

sciences, including Genetic Algorithm, Particle Swarm Optimization algorithm, and 

so on. Also, existing hybrid algorithms with K-means clustering suffer from different 

drawbacks such as lack of providing optimum solution for all problems, getting stuck 

in local optima, tuning many parameters, slow convergence rate, high number of 

error and high intra cluster distance. Also, existing meta-heuristic algorithms with K-

means clustering have low accuracy rate of the clustering and low the number of 

correct answers, they have good performance only in one of the search spaces. 

However, the algorithms are robust and have the ability of adapting with changing 

environment. 

Therefore, more works are still required to develop the performance of hybrid 

and meta-heuristic algorithms in K-means clustering algorithm. Hence, new hybrid 

and meta-heuristic algorithms are introduced in the study to cope with the 

shortcomings of clustering.  

Hence, the hypothesis of the study can be stated as: 

The Genetic Algorithm and the Partial Swarm Optimization Algorithm could 

yield better accuracy for the K-means clustering algorithm. 

Therefore, based on the above issues, the main research question is: 

Are the proposed hybrid optimized algorithms beneficial for enhancement of 

the K-means clustering learning?  



11 

In order to answer the main issue raised above, the following questions need 

to be addressed: 

i. How to propose an improved hybrid GA-K-means scheme for error 

reduction? 

ii. How to develop a hybrid PSO-K-means scheme to reduce the intra-

cluster distance? 

iii. How to design and develop the meta-heuristic of GAPSO and PSOGA 

with K-means algorithm for better accuracy? 

1.4 Aim of the Research 

The aim of this research is to develop and enhance the K-means clustering 

algorithm using the proposed Improved Genetic Algorithm in K-means (I-GA-K-

means), Improved Particle Swarm Optimization Algorithm in K-means (I-PSO-K-

means), hybrid Genetic Algorithm and Particle Swarm Optimization Algorithm in K-

means (GAPSO-K-means), hybrid Particle Swarm Optimization Algorithm, and 

Genetic Algorithm in K-means (PSOGA-K-means) algorithms and reduce the error 

rate, iteration, related processing time, intra-cluster distance and increase the 

accuracy rate. 

1.5 Research Objectives 

In order to reach the answers to the above questions, the objectives of this 

research have been identified as: 

i. To propose an improved hybrid GA-K-means scheme for error 

reduction. 

ii. To develop a hybrid PSO-K-means scheme to reduce the intra-cluster 

distance.  
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iii. To design and develop the meta-heuristic of GAPSO and PSOGA 

with K-means algorithm for better accuracy. 

1.6 Scope of Study  

To achieve the above objectives, the scope of this study is bounded to the 

following limitations: 

i. This study will identify, analyze and improve the K-means clustering 

algorithm. 

ii. In this study, six UCI standard data sets are applied to binary and 

multi classification problems and clustering:  balance, blood, breast, 

iris, pima and wine.  

iii. The focus will be on the improvement of hybrid GA-K-means 

algorithm in the first phase, optimized hybrid methods for improving 

PSO-K-means clustering algorithm in the second phase, and the use of 

meta-heuristic method in the K-means algorithm for developing in 

third phase. 

iv. The comparisons criteria are average, standard deviation, best, and 

worst. While the comparison factors are intra-cluster distance, number 

of iterations, number of correct answer, number of errors, error rate, 

related processing time and accuracy rate. 

v. This study concentrates on the minimization of intra-cluster distance.  

vi. The programs have been customized, developed, and applied to the 

problems using MATLAB R2012b software.    

1.7 Importance of Study 

The study investigates the capabilities of K-means in the clustering algorithm. 

In addition, it develops a clustering algorithm and attempts to eliminate the 

disadvantages of the clustering algorithm. The significance of this research that is 
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removes shortages of the clustering algorithm and developing it using hybrid 

methods and optimization algorithms. This research helps to enhance clustering 

algorithm and develop the clustering. This study uses four algorithms, including I-

GA-K-means, I-PSO-K-means, GAPSO-K-means, and PSOGA-K-means algorithms 

for enhancement of the clustering algorithm. The performance of the proposed 

methods is evaluated to examine whether the proposed algorithms are able to 

decrease intra-cluster distance, iteration, error rate, related processing time and to 

increase the accuracy rate. 

The potential applications by using proposed methods include: computational 

finance, adaptive websites, affective computing, bioinformatics, game playing, 

sequence mining, structural health monitoring, software engineering, search engines, 

recommender systems, medical diagnosis, brain-machine interfaces, computer vision, 

optimization and meta-heuristic. 

1.8 Thesis Organization 

This section presents a brief overview of the contents of this thesis. This 

study is organized into six chapters. The first is the introductory chapter. The second 

chapter describes the background as well as the previously-published studies in the 

field of clustering algorithms. The third chapter describes the research methodology 

of this study. Chapter Four and Five provide the proposed methods and the analysis 

of the obtained results in terms of improving the clustering algorithm. Finally, the 

summary of this study is presented in Chapter Six. The details of each chapter are as 

follows:  

Chapter1, Introduction, the statement of the study is presented. It starts with 

the introduction of the study followed by the background of the study. The problem 

statement, objectives, aim, scope, contribution, and limitations are also presented in 

this chapter. The structure of the study is organized at the end of this chapter. 
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Chapter 2, Literature Review, a review is done on the literature related to all 

major areas of our study: data clustering, clustering algorithm, optimization methods, 

optimization hybrid algorithm, and meta-heuristic algorithm for improving of 

clustering algorithm. Finally, the discussion and summary of this chapter are given. 

 Chapter 3, Research Methodology, presents the methodology adopted for 

this study, including a general framework for three phases of the study and 

descriptions about the overall tools and standard techniques. Three phases of this 

research are explained in this chapter.  

Chapter 4, Hybridization of K-Means Algorithm with GA and PSO, presents 

the methodology, design, flowchart, coding and the UCI dataset for evaluation of 

performance for the first and second proposed algorithms. In this chapter, the 

clustering algorithm is improved by using I-GA-K-means and I-PSO-K-means 

algorithms, which they are present in this chapter.  

Chapter 5, Design Meta-Heuristic of GAPSO and PSOGA with K-Means, 

presents the methodology, design, coding and the UCI dataset for evaluation of 

performance for the third and fourth proposed algorithms. This chapter reports the 

results of experiments conducted on two algorithms, GAPSO-K-means and PSOGA-

K-means. Then, the obtained results are evaluated in regard to various criteria, i.e., 

intra-cluster distance, accuracy, and number of errors. A comparison shows that the 

proposed methods have answers with high accuracy. 

Finally, in Chapter 6, Conclusion and Future Works, the research is 

concluded, discussed, along with highlights of the contributions and findings of the 

research. This chapter also provides suggestions and recommendations for future 

studies.
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government agency data. In addition, other applications of clustering algorithm in 

medical image such as sonography images, mammography images and radiology 

images can be studied. 

Additionally, the proposed algorithms can be employed in other NP-hard 

problems and combinatorial optimization problems. 

Furthermore, other methods such as fuzzy set and rough set were used for 

evaluating the performance of the proposed algorithm with new methods. 
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