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ABSTRACT 

 

 

 

 

Membrane technology is an appealing alternative to the conventional carbon 

dioxide (CO2) separation processes due to its design simplicity, energy efficiency and 

environmentally benign approach. Nanocomposite membrane, especially the thin film 

nanocomposite (TFN) is a relatively new class of membrane which features good 

separation performance and practical processing. Yet, the challenge of achieving good 

dispersion of the nanosized fillers within the polymer matrix remains unsolved. This 

study investigated on the potential of TFN containing modified multi-walled carbon 

nanotubes (MWNTs) for gas separation. Mixed acid oxidation, micro-emulsion 

polymerization and ball milling have been employed to improve the dispersibility of 

MWNTs. The TFNs were fabricated via interfacial polymerization technique to allow 

control over the distribution of the fillers. The effects of modification, incorporation 

scheme and loading of MWNTs on the gas separation performance have been 

investigated. The results suggested that grafting MWNTs with polymethyl 

methacrylate (PMMA) allowed good dispersion of the fillers which can be further 

enhanced by the physical milling to suppress the formation of aggregates. TFN 

produced by incorporating the milled PMMA-MWNTs (m-PMMA-MWNTs) within 

the coating layer showed the best separation performance compared to other 

incorporation scheme. The performance enhancement of the TFN compared to the thin 

film composite counterpart was endowed by the addition of well-dispersed MWNTs 

that served as rapid diffusion channels and the formation defect-free skin. The 

optimum fillers loading is 0.25 g/L which gives TFN with CO2 permeance of 53.5 gas 

permeation unit (12% increment), CO2/nitrogen selectivity of 61.0 (1% increment) and 

CO2/methane selectivity of 35.2 (54% increment). TFN embedded with m- PMMA-

MWNTs could potentially be used for low pressure carbon capture and storage 

application with further development. 



vi 

 

ABSTRAK 

 

 

 

 

Teknologi membran merupakan alternatif yang menarik berbanding proses 

pemisahan karbon dioksida (CO2) konvensional kerana rekabentuknya yang ringkas, 

mempunyai kecekapan tenaga dan pendekatannya yang mesra alam. Membran 

komposit nano, terutamanya membran filem nipis komposit nano (TFN) merupakan 

membran kelas baru yang bercirikan prestasi pemisahan yang bagus dan pemprosesan 

yang praktikal. Namun, kesukaran untuk mencapai serakan pengisi bersaiz nano dalam 

matriks polimer yang sekata masih dihadapi. Penyelidikan ini bertujuan untuk 

mengkaji potensi TFN yang mengandungi tiub-tiub nano karbon berbilang dinding 

(MWNTs) yang telah diubahsuai untuk pemisahan gas. Pengoksidaan campuran asid, 

pempolimeran emulsi mikro dan pengisaran menggunakan bebola besi dilaksanakan 

untuk meningkatkan serakan MWNTs. TFNs dihasilkan melalui teknik pempolimeran 

antara muka untuk mengawal pengagihan pengisi. Kesan pengubahsuaian, skema 

penambahan dan muatan MWNTs terhadap prestasi pemisahan gas telah dikaji. Hasil 

kajian menunjukkan bahawa pengolahan MWNTs dengan polimetil metakrilat 

(PMMA) membolehkan pengisi diserakkan dengan sekata, dimana serakan ini boleh 

diperhebatkan lagi dengan pengisaran secara fizikal untuk menghalang pembentukan 

agregat. TFN yang ditambah dengan PMMA-MWNTs yang telah dikisar (m-PMMA-

MWNTs) ke dalam lapisan penyalut menunjukkan prestasi pemisahan yang terbaik 

berbanding skema penambahan yang lain. Peningkatan prestasi TFN berbanding 

komposit filem nipis adalah disebabkan oleh penyelerakan sekata MWNTs yang 

berfungsi sebagai saluran resapan pantas dan pembentukan lapisan permukaan yang 

sempurna. Muatan optimum pengisi adalah sebanyak 0.25 g/L, yang mana telah 

menghasilkan TFN yang mempunyai telapan CO2 sebanyak 53.5 unit telapan gas 

(kenaikan 12%), kememilihan CO2/nitrogen sebanyak 61.0 (kenaikan 1%) dan 

kememilihan CO2/metana sebanyak 35.2 (kenaikan 54%). TFN yang mengandungi m-

PMMA-MWNTs berpotensi untuk digunakan dalam aplikasi memerangkap dan 

menyimpan karbon bertekanan rendah melalui perkembangan yang selanjutnya. 
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CHAPTER 1  
 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Research 

 

 

Carbon dioxide (CO2) is one of the major greenhouse gases that contributes to 

the global warming issue whereby the drastic increase of the globe temperature 

changes the world climate pattern and upset the health of our ecological system. This 

scenario will ultimately leads to the loss of crops production and natural biodiversity 

(Powell and Qiao, 2006). Anthropogenic activities such as biogas anaerobic digestion, 

coal gasification, fossil fuel combustion and natural gas exploration are the sources of 

emission of large amount of CO2 into the atmosphere. Since it is anticipated that the 

global population will expand close to 10 billion inhabitants by year 2050 (Lalia et al., 

2013), increase in the world resources and energy demand is inevitable and will only 

bring about more greenhouse gases emission (Adewole et al., 2013). Apart from the 

aforementioned impact of CO2 at global scale, back to industrial application especially 

in natural gas processing, this gas presents a serious problem because it can lower the 

heating value of the gas stream. Additionally, CO2 acidic nature decreases of the gas 

stream pH and causes corrosion to the pipelines which severely impairs the 

transportation system (Zhang et al., 2013b). Therefore, recently, removal and emission 

mitigation of CO2 have become hot research topics (Lindau et al., 1995).  
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Thus far, chemical absorption, pressure swing adsorption and cryogenic 

separation are the most common techniques employed for the aforementioned 

objectives. Even though these technologies have reached developmental maturity, they 

are constantly plagued by problems such as flooding, foaming, entrainment, weeping 

and absorbents degradation. Additionally, their high capital and maintenance costs, 

great energy consumption and large plant size as well as complexity of operation units 

force investors and scientists to look for better alternatives. Membrane technology 

prevails as a viable option due to its design simplicity and modularity that ease scaling 

up process and membrane separation is relative energy efficient compared to 

conventional approaches (Sanders et al., 2013). 

 

 

In general, membranes can be categorized into organic or polymeric and 

inorganic membranes. Currently, polymeric membranes are the dominating materials 

used for gas separation because they are highly processable into different format and 

the raw materials are relatively cheap compared to inorganic membranes (Adewole et 

al., 2013). Nevertheless, contemporary polymeric materials are insufficient to exploit 

the full potentials of membrane application in the industrial scale (Chung et al., 2007). 

This is because development of the polymeric membranes is often bounded by the 

Robeson’s tradeoff between selectivity and permeance. In view of such predicament, 

attempts to improve the polymeric membrane performance via material engineering 

such as heat and chemical treatment, polymers blending and incorporation of inorganic 

fillers have been made. Recent years, the scheme of mixed matrix membrane (MMM) 

has gained much attention and is being studied intensively (Kim et al., 2007). 

Incorporation of inorganic fillers which are integrally superior in term of selectivity 

into the polymeric membrane can push the performance of the resulted MMM to 

greater heights (Bastani et al., 2013). There are two types of fillers used for MMM 

fabrication which are porous filler such as zeolite, carbon molecular sieve (CMS), 

activate carbon, metal organic framework (MOF) and carbon nanotubes (CNTs) and 

non-porous fillers such as silica, titanium oxide (TiO2) and fullerene (C60) (Aroon et 

al., 2010).  
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The invention of asymmetric membrane by Loeb and Sourirajan marks a 

significant breakthrough in membrane development because the scheme of fabricating 

a thin dense skin on top a porous substrate has successfully resolved the issue of low 

permeation of the dense polymeric membrane including MMM. In general, the skin of 

the asymmetric membrane is the main layer that performs gas separation function 

while the porous layer acts as the support for the fragile skin (Chung et al., 2007). 

Since the skin is only approximately 0.2µm thick, resistance of mass transport across 

an asymmetric membrane is much lower compared to a dense membrane. In 1965, 

instead of fabricating an asymmetric membrane, Mogan has invented the interfacial 

polymerization (IP) technique for producing thin film composite (TFC) membrane. 

The resulted TFCs produced from this method are very similar to the asymmetric 

membranes but instead of a single-step fabrication approach, IP is a two-step process 

which enables each layer of the TFC to be controlled and optimized independently to 

suit targeted applications (Sorribas et al., 2013). Therefore, membranes that are more 

versatile can be tailored via IP technique. Apart from that, IP exhibits self-termination 

property whereby at certain point of the reaction, the growing film restricts the supply 

of reactants to the interface which leads to formation of very thin (approximately 50nm 

thick) skin layer (Yu et al., 2010) 

 

 

Although much attention have been given on the scheme of synthesizing very 

thin organic-inorganic composite selective layer, only a handful of studies have 

actually been done (Chung et al., 2007). This is especially true for incorporation of 

fillers into TFC (also known as thin film nanocomposite) because most of the past 

studies focus on dispersion of the nanotubes in polymer matrix via phase inversion 

technique (Wu et al., 2013). Hence, there are still tremendous room of development 

and in-depth research on thin film nanocomposite (TFN) membrane that can be done. 

The main purpose of this study is to develop TFN membranes containing polymethyl 

methacrylate grafted multi-walled carbon nanotubes (PMMA-MWNTs) and to 

evaluate their performance for CO2 capture.  
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1.2 Problem Statement 

 

 

In this subsection, three problems that limits the development of gas separation 

membrane have been identified and highlighted as the subject of interest in this 

research. First, the trade-off between the selectivity and permeance of polymeric 

membrane which presents as a great barrier to the enhancement of membrane 

performance. Although much success to improve the separation properties of 

polymeric membranes have been achieved in past efforts via manipulation of the 

polymer structure, the performance is still trivial compared to the performance of 

inorganic membrane. On the other hand, fabrication of inorganic membrane is costly 

and often faced with difficulty to produce continuous, defect-free membrane which 

requires carefully handling due to its inherent brittleness. Nanocomposite membrane 

which comprises a continuous polymeric phase and an inorganic dispersed phase, also 

known as fillers, appears to be the way out of the aforementioned bottleneck. This 

class of material unites the goodness of both polymeric (ease of processing) and 

inorganic (superior selectivity and permeance) materials into a robust candidate which 

is easy to scale up for production.  

 

 

The second problem is related to the incorporation of CNTs (filler of choice in 

this study) in the polymer matrix. Despite the advantages offered by this nanomaterial, 

past studies have witnessed the poor compatibility between CNTs fillers and polymer 

matrix as a major hiccup to the development of CNTs/polymer composite because the 

overall transport properties of MMM are critically dependent on the nanoscale 

interface morphology of the membrane (Chung et al., 2007). Ideally, full contact of 

polymer matrix with the fillers surface without formation of defects is favorable for 

material transport. Yet, poor adhesion of polymer with CNTs often results in the 

presence of interface which is significantly differing from the bulk polymer. As such, 

surface modification of the fillers is necessary to improve the interfacial properties 

which could bring about the homogenous dispersion of CNTs throughout the polymer 

matrix.  
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Finally, the third issue concerns the thickness of mixed MMM fabricated via 

phase inversion technique. Thickness of membrane influence the mass transport of 

penetrant species through the matrix. Thin membrane is definitely more preferable 

than thick ones as it allows greater gas permeation rate. Ideally, the nanofillers are 

preferably to be deposited within the skin layer where the selective layer performs 

most of the separation function while the porous layer only acts as the support. This 

also allows cost and material saving as the usage of the costly inorganic fillers could 

be reduced. However, controlling the distribution of fillers within the membrane 

through a single-step fabrication approach is not a casual task (Aroon et al., 2010). 

This feat is made possible by employing a two-steps fabrication method such as dip-

coating, spin-coating and interfacial polymerization in which the skin and support 

layers can be manipulated discretely. In this study, IP techniques is adopted due to its 

relative simple procedure and capability to produce very thin selective skin through 

self-inhibition.  

 

 

Furthermore, CNTs have rarely been explored as fillers to be incorporated into 

the active layer of interfacial polymerized thin film composite because it is challenging 

to achieve good dispersion of CNTs in the polyamide layer during synthesis which 

will ultimately reflects the performance of the membrane (Shen et al., 2013). While IP 

technique is commonly adopted for fabrication of TFC and TFN membranes for liquid 

separation, relevant literature for the field of CO2 separation is rather limited (Li et al., 

2013). Largely, incorporation of fillers was conducted within the skin and support 

layers. Yet, since the pristine MWNTs used in this study have length around 3-6 µm, 

in which is greater than the average thickness of the thin film that could be formed 

(0.15 µm) using the parameters of IP reported by Li et al. (2013), some of the randomly 

oriented nanotubes might protrude from the membrane surface if they were directly 

incorporated into the skin layer. In order to minimize the unfavorable CNT protrusion, 

the functionalized MWNTs were incorporated into the polydimethylsiloxane (PDMS) 

coating layer (sub-layer beneath the thin film) during the TFN fabrication. Mechanical 

ball-milling procedure have also been employed to shorten the nanotubes (Fonseca et 

al., 2010) in hope to minimize protrusion. As such, it is of great interest in this research 

to investigate the potential performance of TFN gas separation membranes embedded 
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with modified CNTs as well as devising better CNTs incorporation techniques in order 

to optimize the output of this type of membrane 

 

 

 

 

1.3 Objectives of Study 

 

 

Based on the aforementioned issues, this study set out to investigate the 

potential of TFN embedded with modified MWNTs for gas separation with the 

following objectives: 

 

 

i. To investigate the effects of MWNTs modifications on the dispersibility of the 

fillers, surface morphologies and gas separation performance of resultant TFNs.  

ii. To identify the best fillers incorporation scheme based on the overall 

morphologies and gas separation performance of the resultant TFNs 

iii. To determine the optimum fillers loading to be embedded in the TFN based in 

the best incorporation scheme. 

 

 

 

 

1.4 Scope of Study 

 

 

In order to achieve the objectives of this study, the following scopes of study 

have been identified. 

 

 

i. Oxidizing the MWNTs (O-MWNTs) using sulfuric acid (H2SO4)/nitric acid 

(HNO3) (3 M each) mixed acid in volume ratio of 3:1 under reflux condition. 

ii. Grafting the MWNTs with PMMA (PMMA-MWNTs) via microemulsion 

polymerization using cetyltrimethyammonium bromide as surfactant to 

suspend the nanotubes and methyl methacrylate monomers in micelles and 

potassium persulfate as initiator of the polymerization process. 

iii. Ball-milling the functionalized MWNTs for 8 hrs to obtained milled oxidized 

(m-O-MWNTs) and milled PMMA grafted (m-PMMA-MWNTs) fillers. 
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iv. Confirming the modification of MWNTs using attenuated total reflectance 

Fourier transform infrared spectroscopy (ATR-FTIR). 

v. Determining the purity of functionalized MWNTs using thermal gravimetric 

analysis (TGA) 

vi. Characterizing the functionalized MWNTs in term of structural morphology 

using transition electron microscopy (TEM) 

vii. Formulating polysulfone (PSf) polymer dope and casting of PSf flat sheet 

support layer via phase inversion technique. 

viii. Estimating the molecular cut-off (MWCO) of the PSf supports via solute 

rejection method using ultraviolet-visible spectroscopy (UV-Vis) 

ix. Performing interfacial polymerization atop the polydimethylsiloxane (PDMS) 

coated PSf supports to produce TFNs consisting modified MWNTs.  

x. Incorporating modified MWNTs into different layers (inter-coating layer and 

skin layer) of the TFNs.  

xi. Manipulating the loading of modified MWNTs in the TFN membranes in 

between 0.00 g/L and 1.00 g/L. 

xii. Confirming the formation of polyamide (PA) thin film layers using ATR-FTIR. 

xiii. Characterizing the surface and cross-sectional morphologies of the TFNs using 

field emission scanning electron microscopy (FESEM). 

xiv. Evaluating the separation performance of the TFN membranes in terms of 

permeance and selectivity using CO2, nitrogen (N2) and methane (CH4) pure 

gas. 
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1.5 Significance of Study 

 

 

Despite a rich amount of research works that have been conducted on thin film 

composite membrane, relative little studies have focused on gas separation and works 

that related to incorporation of CNTs nanoparticles into the interfacial polymerized 

thin selective layer of are even scarcer. Apart from that, studies related to the 

incorporation of nanofillers within the coating layer of gas separation membrane has 

never been reported. As such, it is the ultimate goal of this study to contribute to 

understanding of the gas separation performance of TFN membrane embedded with 

MWNTs. The outcome of this investigation could pave ways for more effective 

fabrication method and accelerate the development of CNTs/TFN membrane for gas 

separation.  

 

 

 

 

1.6 Assumptions and Limitations of Study 

 

 

In this study, the morphologies of support layers such as surface roughness, 

pore size and structure and surface charge are assumed to have minor effects on the 

formation of the thin polyamide layer. It is assumed that the carbon nanotubes used do 

not possess molecular sieving capability towards the tested gases because the diameter 

of MWNTs (OD×ID = 10±1nm×4.5±0.5nm) is larger than the kinetic size of all the 

gas species (CO2 = 3.3 Å, N2 = 3.6Å and CH4 = 3.8Å). Pure gases of CO2, N2, and 

CH4 are used for the permeation test and selectivity is calculated for ideal cases.  

 

 

The length of milled MWNTs cannot be determined due to their thread-like 

structure and limited analytical tool. Due to time constrain, the fabrication method 

used to produce the flat sheet support was fixed to phase inversion technique while the 

thin film layer was produced by first immersing the support into the organic phase 

followed by reaction with the aqueous phase to produce single skin. The immersion 

duration, reaction duration and monomer concentration used in interfacial 

polymerization were also kept constant based on previous studies.   
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