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ABSTRACT 

This research investigates the structural behaviour of simply supported composite 

beams, in which a ferrocement slab is connected together with cold-formed steel (CFS) 

beam by means of shear connectors. This system, called Precast Cold- Formed Steel-

Ferrocement Composite Beam System, is designed to utilise the composite action between 

the CFS sections and ferrocement slab where shear forces are effectively transmitted 

between the beam and slab via shear connectors.CFS sections have been recognized as an 

important structural element in developed countries, and sustainable construction material 

for low rise residential and commercial buildings. However, it still is remains as 

insufficient data and information on the behaviour and performance of CFS as the 

composite construction in composite action is yet to be established. One limiting feature 

of CFS is the thickness of this section that makes it susceptible to torsional, distortional, 

lateral torsional, lateral distortional and local buckling. Hence, a reasonable solution is 

resorting composite construction of structural CFS section integrated with reinforced 

concrete deck slab. An efficient and innovative beam system of built-up CFS sections 

acting compositely with a concrete deck slab has been developed to provide an alternative 

composite system for floors and roofs in buildings. In this study, ferrocement is an 

alternative solution as concrete deck of a slab. It is a form of thin reinforced concrete 

structure, in which a strong cement-sand mortar matrix is reinforced with closely spaced, 

multiple layers of thin wire mesh or small diameter rods, uniformly dispersed throughout 

the matrix of the composite. This study mainly comprises three major components; 

experimental work, theoretical analysis and finite element analysis using ANSYS (version 

11). Experimental works involved small-scale and full-scale testing of laboratory tests. 

The first phase of test program comprised often push-out test specimens and eighteen full-

scale CFS-ferrocement composite beam specimens. Push-out tests were carried out to 

determine the strength and behaviour of the shear transfer enhancement between the CFS 

and ferrocement.Three types of shear connectors (bolts, self-drilling screws, bar angle) 

were tested and 2, 4 and 6 layers of wire mesh in ferrocement cold formed were proposed. 

The expression for predicting the capacity of shear connector in which bolt with 12mm 

diameter is best to be considered to transfer shear force into steel section-ferrocement slab 

interface. The second phase of test program comprised of a total of eighteen full-scale 

simply supported composite beams with variable parameters and tested to failure. The 

main variables considered in the study are the shape of section (I- and C-section as beam), 

thickness (2mm, 3mm and 4mm) of the CFS section and number of wire mesh layer (2, 4 

and 6 layers). Four points load bending system was used to test the specimens. The plastic 

analysis results depicted that the ultimate bending capacity of a ferrocement CFS 

composite beam can be estimated by using conventional equilibrium procedures and the 

constitutive laws prescribed by Euro codes. The finite element and theoretical model 

showed agreement with the experimental results based on the moment versus deflection 

curves of the proposed composite beam system. 
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ABSTRAK 

Penyelidikan ini mengkaji sifat-sifat struktur rasuk rencam disokong mudah, di 

mana papak ferosimen disambungkan dengan rasuk keluli tergelek sejuk menggunakan 

penyambung ricih. Sistem ini dikenali sebagai Rasuk Rencam Pratuang Keluli Tergelek 

Sejuk-Ferosimen, di mana sistem ini direkabentuk supaya daya ricih antara papak dan 

rasuk dapat diedarkan secara berkesan melalui penyambung ricih. Keluli tergelek sejuk 

telah dikenali sebagai elemen struktur penting di negara maju dan bahan pembinaan lestari 

untuk pembinaan bangunan kediaman dan perniagaan ketinggian rendah. Walau 

bagaimanapun, maklumat berkaitan dengan sifat-sifat keluli tergelek sejuk dalam 

pembinaan komposit masih kekurangan. Salah satu kekurangan keluli tergelek sejuk 

adalah ketebalan keratan yang nipis menyebabkan kilasan dan lengkokan mudah berlaku 

pada keratan. Oleh demikian, salah satu penyelesaian adalah menggunakan pembinaan 

rasuk rencam yang melibatkan keratan keluli tergelek sejuk diperkukuhkan dengan papak 

ferosimen. Satu sistem rasuk rencam yang cekap dan inovasi telah dicipta sebagai salah 

satu pilihan untuk pembinaan lantai bangunan. Dalam kajian ini, ferosimen digantikan 

sebagai bahan pembinaan untuk papak lantai. Bahan ini dibina dengan menggunakan 

simen dan pasir diperkukuhkan dengan lapisan wire mesh nipis atau rod kecil, bertaburan 

sama rata sepanjang matriks komposit. Kajian ini terdiri daripada tiga komponen utama, 

kerja eksperimen, analisis teori dan analisis unsur terhingga dengan menggunakan 

ANSYS (versi 11). Kerja eksperimen melibatkan ujian skala kecil dan ujian skala penuh 

di makmal. Kerja eksperimen fasa pertama mempunyai sepuluh spesimen ujian menolak-

keluar dan lapan belas ujian rasuk rencam skala penuh. Ujian menolak keluar bertujuan 

menetukan kekuatan dan sifat-sifat penyambung ricih antara keluli tergelek sejuk dan 

ferosimen. Tiga jenis penyambung ricih (bolt, skru gerudi sendiri dan rod) dengan 2, 4 dan 

6 lapisan wire mesh ditanam dalam papak ferosimen telah diuji dalam kajian ini. Merujuk 

kepada keputusan ujian, bolt dengan garis pusat 12mm telah dicadangkan untuk 

mengedarkan daya ricih antara keluli tergelek sejuk dan ferosimen. Kerja eksperimen fasa 

dua melibatkan lapan belas ujian rasuk rencam skala penuh dengan pelbagai parameter 

dan diuji sehingga gagal. Parameter yang dikaji adalah bentuk keratan rasuk (keratan I- 

dan C-), ketebalan keratan (2mm, 3mm and 4mm) dan bilangan lapisan wire mesh (2, 4 

dan 6 lapisan). Sistem lenturan empat titik beban telah digunakan untuk menguji spesimen 

rasuk rencam. Keputusan analisis plastik menunjukkan bahawa kekuatan lenturan 

muktamad rasuk rencam boleh dikira dengan menggunakan kaedah keseimbangan selaras 

dengan Eurocode. Model kaedah unsur terhingga dan kaedah analisis teori menunjukkan 

persetujuan yang baik dengan keputusan ujian eksperimen. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 General Appraisal 

The use of composite beam in buildings is becoming popular due to the 

increase in loading capacity and stiffness. The benefits of the composite beam have 

resulted in significant savings in steel weight and reduce the depth of the beam. To 

obtain more economical structural design against the cold-formed steel (CFS) beams, 

composite beam is designed by taking the advantage of incorporating the strength of 

concrete slab by means of shear connectors. These advantages of composite beam have 

contributed to its the dominance in the commercial buildings in steel construction 

industry. The advantages of composite construction have been further extended with 

the use of ferrocement with possible use as pre-cast composite beam. Composite action 

is characterized by interactive behaviour between structural steel and concrete 

components designed to use the best load-resisting characteristics of each material. 

Steel and concrete composite system, which together resists the entire set of loads 

imposed on the structure, is generally more efficient in resisting the applied loads. 

An illustrative concrete-steel composite cross-section, commonly used in 

composite beam, is shown in Figure 1, where the concrete carries compressive forces, 

while steel, a ductile material, carries the tensile forces in the composite unit. For 

concrete and steel to act compositely, mechanical connections are generally provided 

in the form of headed shear studs at the interface of the two materials to resist 

longitudinal shear. Thus, the resulting system is an integrated, strong, safe, and cost-

effective composite structure. 
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The effectiveness of shear connectors at the steel concrete interface is a key 

element for achieving composite action in composite structural members. For 

conventional hot-rolled steel composite structures, extensive research has already been 

carried out (Deierlein, 1988; Viestet et al., 1997) to develop the most efficient and 

commercially viable shear connectors. Welded headed shear studs are most 

prominently used in conventional composite structures as shear connectors. Due to the 

thinness of the CFS sections, welding of shear studs is not viable (Hanaor, 2000); 

hence, the development of shear connectors for CFS and concrete composite structures 

is of utmost importance and require further research. 

 

Figure 1.1 Composite Sections 

CFS sections are made by bending a flat sheet of steel at room temperature. 

The use of CFS members in building construction began in the 1850s in both the 

United States of America (USA) and Great Britain. The CFS structural members have 

numerous advantages over hot-rolled sections, such as reduced thickness, lightness, 

ease of prefabrication and mass production, speedy erection, and installation. The use 

of CFS sections for secondary beams offer many potential advantages, particularly in 

unusual or special design circumstances. One of the established commercial 

applications of CFS and concrete is conventional composite beam system, where a 

concrete topping layer is placed on top of CFS metal deck. However, the structural use 

of CFS sections began in the mid of 20th century especially for industrial and 
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commercial buildings (Hancock et al., 2001). The typical sections widely used as 

purlin and truss members are “Z” and “lipped C” sections (Figure 2). 

 

Figure 1.2 Typical CFS sections 

Composite construction of CFS sections and concrete began in the mid-1940s 

in Europe and was mainly used for floor systems, where a steel deck made from CFS 

was used to act compositely with concrete (Sabnis, 1979). 

Ferrocement is a form of thin reinforced concrete structure in which a brittle 

cement-sand mortar matrix is reinforced with closely spaced multiple layers of thin 

wire mesh or small diameter rods, uniformly dispersed throughout the matrix of the 

composite (Naaman, 2000). Ferrocement has taken a significant place among 

components used for construction, for its specification of durability and strength, and 

its small thickness, which makes it a component suitable for constructing many 

lightweight structures. Ferrocement appears to be an economic alternative material for 

roofing; however flat or corrugated roofing system is quite popular (ACI 549-R97). 

This study investigated the structural behavior of composite beam system with 

CFS as beam and ferrocement as slab. A new shear connector is proposed in this thesis. 

This type of system could solve the problem of a low flexural bending capacity of the 

bare CFS as a beam. The proposed composite beam system enhances the flexural 

capacity and reduces the deflection due to the composite action and also speeds up the 

construction time as the proposed ferrocement slab acts as permanent formwork. 
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1.2 Background and Rationale 

The construction of industrialized buildings and sustainable houses are in the 

rise all over the world. In Kuwait, development and construction activity is one of the 

most important economic activities needed for both the citizens and the huge foreign 

labor in the state. It has spurred the demand for fast, cost-effective and quality 

residential buildings. The supply of houses by both the public and private sectors is far 

from meeting the demand. Rising cost of both building materials and labor is another 

problem which makes it imperative to study the economic and systematic application 

of new construction materials and systems.          

Industrialization of Building System (IBS) by developing an efficient 

prefabricated composite structural element may deal with the problem amicably where 

the fabrication of the elements takes place in factory or workshops and the elements 

are installed with minimum construction time and minimum number of labor at site.  

1.3 Problem Statement 

Ferrocement is a thin composite material made up of a cement based mortar 

matrix reinforced with thin layer of wire mesh closely spaced together. Over the years, 

applications involving ferrocement have increased due to its properties such as 

strength, toughness, water tightness, lightness, ductility and environmental stability. 

The success of ferrocement has been attributed to its a readily available materials 

components, the low level technology needed for its construction and relatively low 

cost of final products (ACI 549 R-97). 

CFS sections, usually between 1.2 and 3.2mm thickness (Yu et al., 2005), have 

been recognized as an important contributor to sustainable structures in the developed 

countries, and a sustainable ‘green’ construction material for low rise residential and 

commercial buildings. Their usage however, is limited to structural roof trusses and a 

host of non-structural applications (Shaari and Ismail, 2003). One limiting feature of 

CFS is the thinness of its section that makes it susceptible to torsional, distortional, 
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lateral torsional, lateral distortional and local buckling. The thinness of CFS is also 

incapable for CFS-concrete composite beam on the welding of shear studs. 

Prefabricated floor is used in the construction sector in many parts of the world. 

It is an alternative system used to overcome the formwork problems (cost and delay in 

construction) in addition to getting better quality control. It was found, however, that 

the prefabricated elements made of reinforced concrete are very heavy and difficult to 

transport and construct.  

In this study, a new type of composite beam comprised of CFS section with 

ferrocement called Precast Cold–Formed Steel-Ferrocement Composite Beam System 

is proposed to reduce the weight as well as to enhance the strength of the proposed 

system. The advantages of this system, amongst others, are its relatively lighter weight 

as compared to typical reinforced concrete slab which result in the reduction of loading 

of the supported beams and columns. Key elements for precast system are to stiffen 

the structure and speed up the construction time. Ferrocement with its versatile 

properties is the most efficient system available to achieve a light, thin, and stiff 

structure. 

In this study, Ferrocement as slab and CFS as beam are proposed to form a 

composite structure by means of shear connector. Its properties are also evaluated and 

compared with other competing materials. The following points reflect powerful 

properties of CFS and ferrocement which will be integrated together to form a 

composite action. This will develop the following advantages: 

 High strength to weight ratio in behavior for ferrocement and CFS as 

they are integrated together to form a composite structure. 

 A new shear connector is proposed for the proposed composite beam 

system that works well for precast ferrocement slab and CFS section.  
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1.4 Aim and Objectives 

The main aim of this research is to study the behavior and the properties of an 

innovative precast proposed ferrocement-CFS composite beam-slab structural system. 

To achieve this aim, the following objectives are studied: 

1. To propose new viable shear connectors for the proposed composite 

beam system. 

2. To study the parameters used that can affect the performance of the 

proposed composite beam system. 

3. To investigate the behaviour and performance of proposed ferrocement 

slab CFS as composite beam system. 

4. To validate the behavior of the proposal composite beam system by 

Finite Element Analysis (FEA). 

1.5 Scope of the Study 

A new type of composite beam system is proposed comprising of CFS sections 

as beam with ferrocement as slab, called Precast Cold–Formed Steel-Ferrocement 

Composite Beam System. Two types of precast composite beams are proposed, which 

integrated together the slab system developed from ferrocement with CFS section. This 

study, however, focuses on the behavior and properties of ferrocement-CFS composite 

beam-slab structural system. The performance of the proposed shear connector system 

for the proposed CFS-Ferrocement composite beams is also studied. The scope of the 

study covers two areas of research work on the proposed CFS–Ferrocement composite 

action. The first research area is related to the performance of shear transfer. The 

second research area is related to the performance of the proposed CFS-Ferrocement 

composite beam.  
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1.5.1 Push Tests 

Ten specimens with different configurations are proposed for the experimental 

work on push out test for the proposed shear connector. Push-out test method is 

adopted to study the mode of failure, shear capacity, and ductility due to the changes 

made to the parameters of the proposed shear connector. Clause 5.4.3 of BS 5950: Part 

3 mentioned that since the characteristic resistance value are not presently given in the 

code for all types of shear connectors other than headed studs; therefore, the 

characteristic resistance of other types of shear connectors should be determined from 

push-out test. The strength and ductility of shear connectors are always determined 

experimentally due to the complexity of the dowel interaction between shear 

connectors and the concrete slab. The load from the push test is used to determine the 

shear capacity of each of the proposed shear connector. Details of the experimental 

test and discussion of results are discussed later in this thesis.   

1.5.2 CFS-Ferrocement Composite Beam Tests 

The beam section consists of two lipped channels connected back-to-back by 

6.3 mm diameter self-drilling and one lipped channel. The flanges were connected 

with ferrocement panel by three types of shear connectors (Bolts-self-drilling-bar 

angle). The detail of the specimen description and parameters studied are discussed in 

Chapter 3.Data from push-out tests was analysed to determine the most viable shear 

connectors between ferrocement slabs and CFS beams which was then be used in full-

scale tests. 

The proposed CFS-Ferrocement composite beams were tested as full scale and 

their results were used to evaluate the behaviour and performance CFS of an I-section 

was formed by connecting back-to-back of lipped C-channels. There were eighteen 

specimens with different configurations prepared for full-scale testing. A full-scale of 

simply supported beam specimens with 4200mm length between supports were tested 

using four-point load system. The beam was subjected to two point loads with 1400mm 

measured from the supports. This system of loading produces a constant region of pure 
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bending moment between the two applied loads. Hence, the ultimate flexural capacity 

of the proposed composite beams can be established. Details of specimens’ description 

and parameters studied are discussed in Chapter 3. The results of the experimental tests 

were validated by numerical analysis as well as finite element modelling using ANSYS 

(version 11) software. 

1.6 Significance of the Research 

Composite beams are extensively used in construction industry due to their 

efficiency in strength, stiffness and saving materials (Nie et al.,2006; Tahi et al., 2009). 

To date, headed stud shear connectors are commonly used to perform the composite 

action between steel beam and concrete slab (Lawson et al., 2001). However, it was 

found that headed stud shear connectors create a significant tripping hazard on working 

surfaces at site (US Department of Labor, 2001). Thus, alternative new shear 

connectors need to be developed. Also, in small and medium size buildings where the 

span is short (about 4000mm), the use of composite beam with hot rolled steel beam 

is not effective due to the loss of interaction between steel beam and concrete slab 

(Johnson, 1981). The proposed composite beams in this study could be an alternative 

solution to replace the typical composite beam with hot rolled steel and traditional 

reinforced concrete beams in small and medium size buildings.  

Also, in lightweight residential and commercial buildings, CFS members are 

used as floor beams and joists, and designed as non-composite beams (Popo-Ola et al., 

2000; Ghersi et al., 2002). Such beams need to be checked for buckling and most likely 

failed due to lateral-torsional buckling prior to the attainment of their capacities 

(Ziemian, 2010). Big steel sections are then used resulting in space and material 

consuming. Thus, the validation of using CFS sections with ferrocement as a 

composite beam could significantly increase then strength and stiffness capacities. The 

ferrocement slab could also provide lateral restrained that prevents the CFS section to 

fail under lateral-torsional buckling. Also, it could improve the resistance of top flange 

and reduce its tendency to buckle under compression. 
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The finding from this research may eventually lead to the development or 

improvement of the existing system on the welding problem of shear studs on CFS due 

to its thinness. Therefore, this research is to investigate the possibility of using CFS-

ferrocement composite beams for structures. The outcome of this research contributes 

to promote the proposed composite beam construction method as possible industry 

implementation and also the use of CFS as one of the alternative materials for small to 

medium size building construction. Also this research provides important technical 

knowledge which can be used as a design guideline for the proposed composite beam 

of CFS and ferrocement structures.  

1.7 Thesis Layout 

Chapter one presents the general introduction, background of the study, 

problem statement, aims and objectives and scope of this research. Significance of the 

study and thesis layout is also described in this chapter.  

Chapter two carries a comprehensive literature review on the area of study 

and all published works related to current study.  

Chapter three describes the specimen, test setup and instrumentation used in 

the experimental for small-scale, push-out test and full-scale flexural test of CFS- 

ferrocement composite beams.  

Chapter four in which three finite element models are used to verify the 

experimental results and expands the study for more specific points of view. 

Chapter five describes the results and analysis of the experimental works for 

push-out tests and evaluates the strength and behaviour of a shear connector’s 

enhancement.  
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Chapter six describes the results and analysis of the full-scale flexural test of 

CFS-ferrocement composite beams.  

Chapter Seven presents the discussion and comparison of all the test results, 

conclusions and the recommendations.  
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