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Abstract 

 
The goal of this research has been to exploit the amphiphilic properties of 

graphene oxide (GO) for the preparation of well-dispersed polymer-graphene 

nanocomposites. In order to achieve this aim, the synthesis of nano-dimensional GO 

was conducted according to a recent method for the preparation of small and uniform 

GO. The ability of GO to function as surfactant was demonstrated in miniemulsion 

polymerization of styrene and other vinyl monomers of different polarities, in the 

absence of conventional surfactant. Miniemulsion polymerization was chosen due to its 

unique characteristic which enables the initial entrapment of GO on the surface of 

monomer droplets. The formation of ‘armoured’ particles indicated the presence of GO 

at the surface of particles, consistent with its surface active properties. Polymer particles 

with diameters ranging from 500 nm to a few microns, with relatively broad particle 

size distributions were observed.  

 

The polarity of the monomers was found to strongly influence the emulsion 

stability; monomers with a relatively small polar component (based on Hansen 

solubility parameters) such as styrene, lauryl methacrylate and benzyl methacrylate, 

generate stable emulsions that can be effectively polymerized. The differences in pH of 

the emulsion investigated in this research exerted a relatively minor influence on the 

polymerization, whereas the ionic strength on the other hand had a more significant 

effect – the presence of a suitable concentration of NaCl resulted in increased colloidal 

stability and narrower particle size distribution. Poly(styrene-co-butyl acrylate)/GO film 

resulting from miniemulsion polymerization was visually homogeneous with evidence 

of preserved ‘armoured’ particles, hence presenting an efficient method for the 

preparation of polymer/graphene nanocomposites. 
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Key to Symbols and Constants 
 

cm    Centimetre  

dn    Number average diameter  

dv    Volume average diameter 

dz    Zeta average diameter 

D The diffusion coefficient of GO sheet from the aqueous 

phase to the newly generated oil-water interface 

Ð    Dispersity 

g    Gram 

GPa    Gigapascal 

h    Hour 

kact    Rate constant of activation 

kdeact    Rate constant of deactivation 

kd    Rate constant of initiator decomposition 

ki    Rate constant of initiation 

kt    Rate constant of termination 

L    Litre 

M    Mol litre-1 

mA    Milli ampere  

mg ml-1   Milligram per millilitre  

min    Minute 

mL    Millilitre 

µm    Micrometre 

Mn    Number average molecular weight 

Mw    Weight average molecular weight 

mV    Milli volt 

nm    Nanometre 

pH    Measure of the acidity or basicity of an aqueous solution 

π    pi 

rpm    Revolutions per minute 

S m-1    Siemens per metre 

Tg    Glass transition temperature 
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v/v    Volume by volume 

W m-1 K-1   Watt per meter Kelvin 
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Key to Abbreviations and Acronyms 

 

AIBN    Azobisisobutyronitrile 

AOT    Sodium bis-2-ethylhexylsulfosuccinate 

ATR    Attenuated Total Reflectance 

ATRP    Atom transfer radical polymerization 

BAM    Brewster angle microscopy  

BMA    Benzyl methacrylate 

BPO    Benzoyl peroxide 

CDCl3    Deuterated chloroform 

CLRP    Controlled living radical polymerization 

CMC    Critical micelle concentration 

CNT    Carbon nanotubes 

CTAB    Cetyltrimetyl ammonium bromide 

CVD    Chemical vapour deposition 

DLS    Dynamic light scattering 

DCM    Dichloromethane 

DMAc    Dimethylacetamide  

DMF    Dimethylformamide 

DSC    Differential Scanning Calorimetry 

DTAB    Dodecyl trimethylammonium bromide 

DVB    Divinyl benzene 

EIP    Emulsion inversion point 

FTIR    Fourier-Transform Infra-Red Spectroscopoy 

GO    Graphene oxide 

HCl    Hydrochloride acid 

HD    Hexadecane 

HLB    hydrophilic-lipophilic balance 

H2SO4    Sulphuric acid 

ITO    Indium tin oxide  

KCIO3    Potassium chlorate  

KPS    Potassium persulphate 
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LED    Light emitting diodes 

LMA    Lauryl methacrylate 

MA    Methyl acrylate 

MgSO4   Magnesium sulphate  

MMA    Methyl methacrylate  

NaCl    Sodium chloride 

NaOH    Sodium hydroxide 

n-BA    Normal butyl acrylate  

NMP    1-methyl-2-pyrrolidinone 

NMP    Nitroxide-mediated polymerization 

NMR    Nuclear magnetic resonance 

OLED    Organic light emitting diodes 

PGNs    Polymer/graphene nanocomposites 

PhD    Doctor of Philosophy 

PHEMA   Poly(2-hydroxyethyl methacrylate)  

PIT    Phase inversion temperature 

PMMA   Polymethyl methacrylate 

PNIPAM   Poly(N-isopropylacrylamide) 

PS    Polystyrene 

PS-GO    Polystyrene-graphite oxide 

P2O5    Phosphorus pentoxide 

RAFT    Reversible addition-fragmentation chain transfer 

RGO    Reduced graphene oxide 

SDBS    Sodium dodecylbenzene sulfonate 

SDS    Sodium dodecyl sulphate 

SEM    Scanning Electron Microscopy  

SFC    Supercritical fluid  

SiC    Silicon carbide 

St    Styrene 

t-BA    Tertiary butyl acrylate 

TEM    Transmission Electron Microscopy  

TCE    Transparent conducting electrodes 

THF    Tetrahydrofuran 
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TGA    Thermogravimetric Analysis 

XPS    X-Ray Photoelectron Spectroscopy 
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CHAPTER 1: Introduction 
 

1.1 Introduction 

 

The discovery of single layer graphene in 20041 has been one of the most 

significant achievements due to the promising applications of this novel material in 

various fields. Graphene possesses a unique combination of excellent electrical, 

thermal, optical and mechanical properties.2,3 One of the most promising applications of 

this material is in polymer nanocomposites.4,5 Polymeric nanocomposite materials, i.e. 

materials comprising polymer and “filler” (e.g. carbon black, clay), are attractive 

because their properties can be significantly enhanced relative to the pure polymer. The 

infusion of graphene into polymer matrices has resulted in a significant property 

enhancement of the nanocomposites at much lower percolation threshold in comparison 

to other fillers.6 Nevertheless, the long standing desire in polymer nanocomposites is to 

achieve enhanced filler dispersion with good compatibility within the polymer host in 

order to fully utilise the great properties of the filler. To date, much effort with regard to 

physical and chemical modifications to increase the compatibility between graphene and 

polymer matrices has been reported due to the hydrophobic nature of this novel 

material.7,8  

 

Graphene oxide (GO), the oxidized form of exfoliated graphene, has generated 

significant interest due to the extensive array of functional groups that permit further 

functionalization and is considered as a promising precursor for the production of 

graphene-based materials. A recent report in 2010 revealed the ability of GO to stabilize 

mixtures of hydrophobic liquids and water due to its amphiphilic properties with the 

unique combination of hydrophilic edges (carboxylic acid groups) and more 

hydrophobic basal plane.9 Thus, it is possible to use GO sheets to prepare polymer 

nanocomposites through the self assembly of material/particles at the droplets interface, 

which is known as Pickering emulsions.10,11  

 

In-situ polymerization involving the presence of graphene/GO via heterogenous 

system, in particular, miniemulsion polymerization has been widely reported in order to 

achieve high filler dispersion in polymer matrices.12-14 Miniemulsion polymerization is 



2 
 

particularly important for synthesis of organic/inorganic hybrid particles by 

encapsulation of inorganic material,15 preparation of hollow particles16,17 and for 

implementation of controlled/living radical polymerization (CLRP) in dispersed 

systems.18 Typically, relatively large amounts of surfactants are required to maintain 

colloidal stability and avoid large scale coagulation in such systems. The idea of 

employing GO as sole surfactant, which eliminates the use of conventional surfactant, 

in miniemulsion polymerization, presents another promising pathway for the production 

of graphene-based materials. Earlier reports on the synthesis of polymer 

nanocomposites via miniemulsion polymerization in the presence of GO as sole 

surfactant resulted in ill-defined systems, due to large and non-uniform GO sheets.19,20 

Therefore, much effort is still needed to establish the implementation of this promising 

method. In addition, the behaviour of GO as surfactant, and the factors affecting its 

efficiency e.g. GO sheet size, pH, ionic strength, in particular, in miniemulsion 

polymerization are generally not well understood.  

 

1.2 Objective of the Research 

 

The main objective of this thesis is to deliver a method for the preparation of novel 

hybrid graphene-based nanocomposite materials via aqueous miniemulsion 

polymerization by employing nano-dimensional GO as sole surfactant (in the absence of 

conventional surfactant). In order to achieve the objective, the detailed descriptions of 

the milestones are as below: 

 

1. Nano-dimensional graphene oxide sheets is prepared according to a new method 

which entails synthesis of small and uniform GO sheets (100 nm) from graphite 

nanofibers using a modified Hummers method.9 Subsequently, the ability of GO sheets 

to stabilize oil-in-water miniemulsions is investigated by varying the parameters; GO 

sheet size (“large”, “medium” and “small”) and GO loading (1, 3 and 5 wt%). The best 

condition that could give good colloidal stability is determined.  

 

2.  Aqueous miniemulsion polymerization of styrene using nano-dimensional GO 

as sole surfactant is conducted according to the findings in Milestones 1. The 
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morphology of the latex is characterized in terms of particle size and particle size 

distributions.  

 

3. The ability of nano-dimensional GO sheets to serve as sole surfactant in 

miniemulsion polymerization based on various vinyl monomers (acrylate and 

methacrylate) is investigated.  

 

4. The efficiency of GO as surfactant in miniemulsion polymerization of styrene is 

investigated at different pH and ionic strength solution. The optimum pH/sodium 

chloride concentration (NaCl) that gives the most stable miniemulsion with good 

particle size distribution is determined. 

 

5. Poly(styrene-co-butyl acrylate)/GO (via miniemulsion polymerization) film is 

prepared to investigate the dispersion of GO in the polymer matrix. The physical 

properties of the prepared nanocomposite film is tested using a range of experimental 

techniques e.g. differential scanning calorimeter (DSC) and thermal gravimetry analysis 

(TGA).  

 

1.3 Layout of Thesis 

 

This thesis consists of seven chapters where in Chapter 1, a general introduction 

and the aims of the studies are presented. Chapter 2 describes the introduction to 

graphene and GO, the current review on GO as surfactant and general preparation of 

polymer/graphene nanocomposites. This chapter also briefly explains radical 

polymerization and its implementation in dispersed systems with emphasis on 

miniemulsion polymerization. The experimental procedures for the preparation of nano-

sized GO and the miniemulsion polymerization are described in Chapter 3. In this 

chapter, a brief outline of the analytical instrument used throughout the studies is also 

given. Chapter 4 describes the preparation of polystyrene ‘armoured particles’ with 

nano-sized GO sheets via aqueous miniemulsion polymerization in the absence of 

conventional surfactant.  
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The ability of nano-size GO sheets to stabilize oil-in-water miniemulsions based 

on various vinyl monomers is demonstrated in Chapter 5. The effect of monomer 

polarity (evaluated via the Hansen solubility parameters) on the stability of 

miniemulsion is explained. In Chapter 6, the effect of pH and ionic strength of the 

solution on the aqueous miniemulsion polymerization of styrene using nano-sized GO 

as sole surfactant is described. Chapter 7 describes the preparation of poly(styrene-co-

butyl acrylate)/GO via miniemulsion polymerization for highly dispersed GO in the 

nanocomposite. Chapter 8 concludes the preceding chapters with recommendation 

provided for future studies. 
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