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ABSTRAK 

 

 

 

 

 Kajian ini meneroka daya angkat dan mekanisme daya seretan, taburan tekanan 

di sepanjang kord dan aliran visualisasi aerofoil yang mempunyai lubang- lubang kecil 

di atas permukaan aerofoil dengan tujuan penilaian kesan takik pada ciri aerodinamik 

aerofoil. Kajian reka bentuk dan parameter rongga-rongga tersebut yang optimum 

dalam meningkatkan prestasi aerodinamik turut dijalankan. Isu-isu mengenai 

penggunaan bahan api, kos tenaga, kecekapan prestasi aerodinamik untuk kegunaan 

aerofoil dalam mesin, automotif terutama dalam keadaan cuaca yang tidak dijangka 

seperti pergolakan udara yang mengganggui penerbangan udara disebabkan tahap 

prestasi aerodinamik aerofoil yang tidak memberangsangkan telah memberikan impak 

kepada penyelidik untuk meningkatkan prestasi aerodinamik dari semasa ke semasa. 

Dalam konteks semasa, interaksi antara parameter lubang-lubang kecil telah 

dipertimbangan dan perbezaan bentuk silinder dan heksagon telah dipraktik. Aerofoil 

bersaiz 0.14m x 0.148m diuji di bawah terowong angin dengan sudut serangan yang 

berbeza dan variasi halaju udara. Penggambaran aliran asap melalui permukaan 

aerofoil bawah ujian asap ditangkap dengan kamera kelajuan tinggi. Dapatan 

menunjukkan lekukan mampu prestasi daya angkat aerofoil meningkat seiring dengan 

pengurangan daya seretan. Kenyataan ini dibukti dengan kelewatan pemisahan aliran 

akibat dari kepusaran aliran (vorticity) yang berterusan mengurangkan seretan 

geloraan permukaan aerofoil, seterusnya meningkatkan daya angkat dan penguasaan 

aerofoil. The aerofoil lekuk silinder dengan nisbah aspek diameter dengan kedalaman 

0.4 dan jarak lekuk 8500 mikron disyorkan dengan memberikan daya angkat yang 

paling tinggi dan daya seretan yang paling rendah antara semua model yang dikaji.  
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ABSTRACT 

 

 

 

 

The present study explores the lift and drag mechanism, pressure distribution 

along the chord and flow visualization of the debossed dimpled- aerofoil with the aim 

to evaluation the effect of dimples on the aerodynamic characteristic on the aerofoil 

and find an optimisation on the dimples parameter in improving the aerodynamic 

performance. The issues on the fuel consumption, energy cost, aerodynamic 

performance efficiency for aerofoil application in turbine, automotive especially under 

unexpected weather condition such as air turbulence in air flight lead to the concern 

on improving the aerodynamic performance from time to time. In current context, the 

interaction of the dimple parameters influencing the aerodynamic behaviour of the 

aerofoil such as the dimple aspect ratio, shape, pitch resulting in variation of number 

of dimple is considered. An aerofoil sized 0.14m x 0.148m is tested under wind tunnel 

with different angle of attack and air velocity. The aerofoil flow visualizations under 

smoke test are captured with a high speed camera. A comparative study of the smooth 

and dimpled aerofoil with cylindrical (bluff) and hexagonal (blunt) dimple shape is 

investigated. From the result it is shown with the integration of dimple, the lift 

performance of the aerofoil is greatly improved with the delay of flow separation as a 

result from the streamwise vorticity reduces the turbulent skin drag. thus increasing 

the lift and the controllability of the aerofoil. The cylindrical dimpled aerofoil with the 

aspect ratio of 0.4 and pitch 8500 µm is highly recommended with the highest lift and 

lowest drag.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

 

The use of dimple in the design of a product is first introduced in the sense of 

golf ball dynamics in 1800’s.  This design has helped the industry of golf ball till today 

which is the dimple structure design is patented by the William Taylor, the engineer 

originated from England.  Dimples was officially first introduced in the game of golf 

in 1905 as the English engineer William Taylor registered a patent.  It had been brought 

to Taylor attention that golf players tried to make irregularities in the ball under the 

impression that it would cause an increase in the length of their shots, which studies 

performed by Taylor also implied.  Though in most cases the formation of irregularities 

is unfavourable by the researcher, the impact of dimples in helping reducing the wake 

drag is truly astounding.  Considering a perfectly smooth and frictionless sphere, with 

the symmetrical air flow resulting in symmetrical pressure distribution too.  In another 

meaning, the wake region of the sphere will be very big, the drag force in front of the 

ball, attempting in slowing the ball, is cancelled by the equal yet opposite force of the 

rear part.  Minimal lift is produced.  In such circumstances, the integration of dimples 

fosters a series of flow disturbance that delaying the flow separation on spherical body. 

 

 

Livya et. al. [6] study the effect of the dimple by introducing dimples on the 

aircraft wing will create turbulence by creating vortices which delays the boundary 

layer separation resulting in decrease of pressure drag and also increase in the angle of 

stall.  Boundary layer formation and drag forces attributed to the fluid flow over an 

objects surface, provides an understanding of the performance of the object itself. 



2 

Research has been focused on reducing forces related to fluid flow in order to 

allow for greater performance of the object whether it is stationary or dynamic.  

Surface finishes and shapes are the main focus of ongoing research in performance 

areas such as ballistics and sporting.  One of the techniques of this research is the 

surface application of ‘dimples’.  Fluid flow characteristic contributed to the presence 

of dimples develop complex reaction structures.  Due to this complexity research on 

dimples in immersed fluid flow has been conducted in order to develop a greater 

understanding of these flow structures[7]. 

 

 

The streamline bodies have been applied particularly in the aircraft, automotive 

and turbomachinery sector.  The driving of the need to search for the enhancement of 

the aerodynamic performance in the blunt bodies propose several type of the solution 

to the aerofoil especially.  Dimples are one kind of the passive vortex generator that 

do not need energy or actuator to generate the pulsed frequency for the vortex 

formation to create turbulent boundary layer.  Though in certain research dimples can 

divide into outward dimples or indented research[6] but for most of the researches the 

dimple will be referred to the debossed indentation into the surface of the solid bodies.  

Those with sensor or actuator vortex generator will be defined as active vortex 

generator.  Dimples design will be affected by various parameter such as the diameter 

of the dimple to the depth aspect ratio, shapes, pitch which represent the distance 

between two dimples as well as the arrangement of the dimples.  Dimple is also used 

in the safety of automotive implements in the tyre antihydroplanning performance [8]. 

 

 

Enhancing an aerodynamic efficiency (L/D) is one of the key parameter that 

determines performance of an aircraft.  Aerodynamics efficiency is important to 

aircraft system for both commercial and military to have better control over the aircraft 

especially under the unexpected weather or air turbulence in the sky.  Skin friction 

drag is a critical issue in the aircraft system where it will reduce the aerodynamic 

efficiency of the aircraft, thus reduces the stall angle in the aircraft.  Improved stall 

angle to ensure the safe landing of an aircraft [6] 

 

 

Kensrud (2010) claims that stalling during landing due to the reduction in 

dynamic pressure need to compensate by increasing the angle of attack.  In the stalling 
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case, the wing of the aircraft unable to produce the adequate lift to balance weight 

which will then lead to the flow separation that result in the increasing of drag, thus 

reducing the L/D ratio [9].  For the turbomachinery or wind turbine application, the 

horizontal axis wind turbine (HAWT) blade particularly will need to run the machine 

from 0° to 90° no matter in stalled or unstalled situation [10]. 

 

 

Boundary layer is formed when a fluid moves across an submerged objects in 

the direction of the fluid flow.  The boundary separation causes viscous friction or a 

‘drag force’ on the immersed object [11].  The unfavourable drag occurrence in the 

solid bodies which has led to streamlined designs for many modern requirements such 

as vehicles, airfoils, pipes, sporting equipment, firearm projectiles and many more 

fluid affected components.  Reducing drag on objects produces benefits such as 

smaller energy losses, better performance and flight stability.  Examples of how drag 

is diminished can be seen in many different variations.  Some include flow disrupting 

fins seen on modern cars and airfoils, special paint applications on high performance 

vehicles including race cars and aircraft, sleeker helmet designs for professional bike 

riders and dimpled surfaces for golf balls. 

 

 

Apart from drag there are several other important fluid flow characteristics that 

exist with dynamic flow on immersed objects.  One characteristic is boundary layer 

production along the surface of an object.  The design of this layer depends on several 

fluid attributes including the Reynolds Number, density, velocity, viscosity and 

temperature.  The shape and surface finish of the object will affect the boundary layer 

also.  The nature of the boundary layer also affects the aerodynamic efficiency as well.  

Previously more researcher will doubt the capability of dimples in generating more lift 

and reduce the drag meanwhile as the formation of the vortex will be always 

unfavourable for most of the application of fluid mechanics and aerodynamic systems.  

However, the turbulent boundary layer is claimed to be more susceptible to the adverse 

pressure gradient to continue flowing without a separation, though separation does 

occur, the pressure recovery process may take place. 

 

 

Another important characteristic is flight stability.  The stability of an 

immersed object is relied upon for predictability during performance.  Fluid flow can 



4 
 

 
 

be unpredictable in nature for example the erratic behaviour of wind currents over 

objects that rely upon constant flow performance can be affected by unexpected fluid 

movement.  Designs for these objects compensate for these unpredictable events.  An 

example is the surface design for formula one race cars; side winds are reflected at 

angles that produce down force instead of lift.  This effect decreases lifting forces on 

the vehicles that could otherwise diminish the control that the driver has while racing. 

The present study will investigate drag and lift as well as fluid flow characteristics of 

dimpled surface aerofoil immersed in a dynamic flow and their resulting streamline 

from the integration of the micro-dimples to the surface of aerofoil. 

 

 

 

 

1.2  Problem Statement 

 

 

The study of forces reacting on the solid body sink in the fluid (air or water) is 

the crucial to human life.  In the conjunction to the realisation, magnificent work  has 

been initiated by many researchers in the past [12].  In general flow around streamline 

body, the boundary layer near the leading edge is thin and laminar while increasing it 

thickness toward the trailing edge.  At a certain distance from the leading edge is a 

transition region in which the boundary layer changes its nature to turbulent.  Despite 

the turbulent nature of this area, there is still a thin laminar sub layer where there is no 

turbulence on the aerofoil surface.  This is due to the dampening effects of previously 

mentioned viscosity.  This sub-layer slows down and becomes the cause of separation 

and reverse flow, and thus the wing stall.  To avoid separation, but rather delay the 

formation and reduce the intensity of separation, the slowing layer should be 

accelerated and "energize". Throughout the years, many researcher embarks on various 

attempts on controlling the boundary layer to avoid the aerodynamic performance 

related to the flow separation.  One of the proposed idea is turbulators or vortex 

generators are used to creates a swirling wake who places energy in the boundary layer 

of the wing to raise critical angle of attack, a lower stall speed, gentle stall 

characteristics, and therefore result to less tendency to "drop the wing".  However, the 

study on the design and type of the vortex generator such as the use of dimple have 

not reached a consensus.  
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To date, the resolution of resolving drag and lift enhancement using dimples 

has received scant attention in the research literature.  Coming to recent years, the 

dimple design in golf in early ages as well as the utilization of dimple in tribology and 

heat transfer have provoked the idea of the integration of micro-dimple in determining 

the drag and lift force of the solid body with micro dimple.  Plus, despite the 

disadvantage of the drag to the flow of the solid body, a systematic understanding on 

the drag reduction mechanism through micro-dimple still remain unclear and 

ambiguous for most of the research as far as the author concern, there are too little 

details or barely find the studies on the study of micro-dimples on the aerodynamic 

effect of the solid body for the drag and lift mechanism. 

 

 

In the early ages, more studies are done on the golf[13, 14] and dimpled cylinder 

[15] compared to aerofoil.  The application of the bluff bodies and blunt bodies in daily 

life including the pipe flow, the bird or plane flight, racing car and others drives the 

importance of the study on the lift and drag on those application as well as the pressure 

distribution to detection how the changes in the pressure distribution lead to the fluctuating 

of the lift and drag that affecting the aerodynamic efficiency.  The sad case is that in 

contrast to bluff bodies, there is much less information about effects of micro-dimple 

on the aerodynamic characteristics of the blunt bodies of aerofoil as dimples are more 

popularized in the use of bluff body compared to blunt body structure. 

 

 

There are considerable researches on the characteristic of the dimples affecting 

the flow pattern of the solid body.  To illustrate, Ting [16] studied the effects of dimple 

width and depth on the aerodynamic characteristics for a golf ball by CFD.  Aoki[14] 

studied the effects of dimple number, depth and shape on the aerodynamic 

characteristics for a golf ball by some experiments and CFD (LES).  Yet, these 

researches are focused on the macro-size dimples rather than micro-dimples and more 

rely on numerical simulation[6, 15, 17, 18] data rather than experimental research.  

This urge a need to have a method shift from numerical result to experimental data in 

order to obtain the real world practicality data as the current and previous experimental 

results more on demonstrating the raw data of drag and lift rather than connecting them 

to the flow pattern.  They are more depend on the numerical streamline result for 
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description of the drag and lift.  Furthermore, there is lack of study of the relationship 

between aerofoil model NACA 0015 and the characteristic of micro-dimples. 

 

 

 

 

1.3  Objective 

 

 

The objectives of the present study are 

 

 

a. To evaluate the aerodynamic behaviour of the solid bodies with micro-dimples. 

b. To study the flow mechanism of aerofoil with dimples in drag reduction and 

lift enhancement system 

c. To determine the recommended combination of dimple shape and geometry 

for aerodynamic performance enhancement   

 

 

 

 

1.4 Significance of Research 

 

 

 The study of drag and lift force study of aerofoil are very important in the 

aerospace field as well as the turbomachinery for the turbine use.  In the current 

research, a few research questions are significant in solving the stalling effect of the 

aircraft and turbomachinery by integrating the surface of the aerofoil with the micro-

dimple.  Is the drag force can be reduced by utilizing the micro-dimpled surface?  Is 

the lift coefficient can be enhanced using the dimples? How are the flow patterns of 

the aerofoil with the micro-dimple surface? And how are the pressure distributions 

resulted with the integration of the micro dimple on the surface of the aerofoil?  How 

the micro-dimpled surface affecting the fluid flow on the surface of the aerofoil and 

what are the consequences of the flow disturbance on the aerofoil lead to the 

fluctuation of the wake region in the flow pattern of micro-dimpled aerofoil? What are 

the mechanism of the designed dimples that help in improving the aerodynamic 

performance of the aerofoil? These can be obtained the answer from the current 

research.  
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1.5  Scopes 

 

 

The scopes of this project are summarized as follows:  

 

 

a. Solid bodies will be constructed using 3D printer. 

b. Wind tunnel will be used in this experiment. 

c. The temperature set in the wind tunnel test is the surrounding temperature ≈ 

27°C. 

d. The aerofoil model used is NACA 0015. 

e. Test section of the wind tunnel is 0.3m x 03m. 

f. The shape of the dimples are limited to cylindrical and hexagonal shape. 

g. The size of the aerofoil must not bigger than the test compartment of test tunnel. 

h. The research is focused on experimental study only. 

 

 

 

 

1.6 Theoretical Framework 

 

 

The present study will study about how surface roughness will give an impact 

to lift and drag as well as the pressure distribution and the change in boundary layer.  

The current study will focus on the experimental mean using the wind tunnel test.  The 

theoretical framework of the present study is simplified as in the Figure 1.1
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Figure 1.1 Theoretical framework of the current study
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