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ABSTRACT

to atrial septal defect 
still in procuring. In 
Accordingly, in this 
analyse the ability to

solve existing complications. Therefore biodegradable patches were electrospun using 
medical grade polyurethane (PU) added with bioactive agents, chitosan nanoparticles 
(ChNP), collagen (Co) and heparin (Hep). The control patch was pure PU. ChNP 
were added to improve the mechanical properties and bolster the PU.The collagen is 
expected to provide an extracellular matrix improving cell adhesion and cell growth, 
serving as a biological sealant of the ASD.
FTIR showed characteristic vibrations of active constituents and changes in the 
absorbance due to the ingredients. The contact angle analysis demonstrated no 
significance comparing control and composite patches. The mean values for the 
PU, PUChCo and coated PuChCo were found as 84.23° ±  1.06, 87.62° ±  3.73 and 
90.42° ±  1.41 (p < 0.05). Moreover, the structure of the electrospun composite fibres 
were meticulously displayed through scanning electron microscopy. The decrease in 
nanofibre diameter (PU: 0445.7 nm to PUChCo: 0275.0 nm) between control and 
composite is due to a change of viscosity of the spinning solution after adding Co. 
The haemocompatible properties of the patches (PU, PUChCo, PUChCoHep) were 
inferred through in vitro tests, e.g. activated partial thromboplastin time (72.92 s, 70.77 
s,103.33 s), prothrombin time (25.73 s, 29.4 s, 35.67 s) and haemolysis assay (3.64 %, 
2.39 %, 2.12 %). In conclusion, the developed patch was observed to show desirable 
properties for an application in an ASD occlusion device.

Since there are still occuring severe complications due 
(ASD) occluder, the development of a suitable ASD device is 
the last years researcher focused on biodegradable devices, 
research a degradable occluding patch has been developed, to
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ABSTRAK

Memandangkan masih berlakunya komplikasi yang teruk disebabkan oleh 
kecacatan septal atrial (ASD), penciptaan peranti ASD yang sesuai masih dalam 
pemerhatian. Sejak beberapa tahun kebelakangan ini, penyelidik memberi tumpuan 
kepada peranti mesra alam. Oleh yang demikian, penyelidikan patch menyekat 
aliran darah terurai telah dibangunkan bertujuan untuk menganalisis keupayaan 
penyelesaian komplikasi yang sedia ada. Oleh itu, patch biodegradable telah 
dielektrospunkan dengan menggunakan gred perubatan poliurethana (PU) ditambah 
dengan agen bioaktif, nanopartikel chitosan (ChNP), kolagen (Co) dan heparin (Hep). 
Patch kawalan adalah tulen PU. ChNP telah ditambah untuk meningkatkan sifat- 
sifat mekanikal dan meningkatkan kolagen PU.Penggunaan kolagen adalah untuk 
menyediakan matriks extracellular bagi meningkatkan lekatan sel dan pertumbuhan 
sel and juga berfungsi sebagai sealant biologi ASD. FTIR menunjukkan getaran ciri 
komponen-komponen aktif dan perubahan berdasarkan kuantiti bahan. Analisis sudut 
kenalan menunjukkan tiada perubahan ketara berbanding dengan kawalan dan patch 
komposit. Nilai min bagi PU, PUChCo dan PuChCo bersalut adalah 84.23 1.06, 
87.62 3.73 dan 90.42 1.41 (p j0.05). Selain itu, struktur gentian komposit elektrospun 
dapat dilihat melalui mikroskop elektron imbasan. Penurunan diameter nanofiber 
(PU: 445.7 nm untuk PUChCo: 275.0 nm) antara kawalan dan komposit adalah 
disebabkan oleh perubahan kelikatan semasa pemintalan dan selepas penambahan Co. 
Sifat haemokompatible daripada patch (PU, PUChCo, PUChCoHep) adalah melalui 
dalam vitro ujian, pengakifan separa masa tromboplastin (72.92 s, 70,77 s, 103,33 
s), masa prothrombin (25.73 s, 29.4 s, 35.67 s) dan hemolisis assay (3.64%, 2.39%, 
2.12%). Kesimpulannya, patch maju telah menunjukkan sifat-sifat yang sesuai bagi 
penggunaan dalam alat stalemate ASD.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Congenital heart defects have the largest proportion of organ malformation in 
neonates. They occur in eight to ten out of every 1,000 children born in the USA. 
In adulthood even 1 out of 150 is expected to suffer from a congenital heart defect 
[1, 5]. These heart defects can involve the interior walls of the heart, the valves 
and the arteries/veins carrying blood to the heart. In general, they have negative 
effects regarding the normal blood How through the heart which can lead to severe 
symptoms. The blood flow might be slowed down, shunt in the wrong direction or 
blocked completely, which ultimately may lead to death [6, 7]. There are different 
kinds of congenital heart defects depending on the position where they occur and which 
anatomical structure they affect, e.g. Pulmonary or aortic stenosis, ventricular septal 
defect or tetralogy of Fallot. The third most common among these is the atrial septal 
defect, thus a hole between the left and right atrial chamber. The clinical treatment 
differs depending on the kind of defect as well as the severity in each special case [8], 
The first transcatheter device closure of an ASD was reported by King and Mills in 
1976. The transcatheter is nowadays the most common treatment for the ASD defect 
type 2 called secundum ASD [9, 6],

The major challenge of the transcatheter approach is the biocompatibility of 
the used implant. The materials need to show high biocompatibility, especially when 
implanted directly into the blood circuit [10], Commonly used polymers are mostly 
bioinert, so they neither evoke a rejection reaction nor show any side effect in favour of 
the body [11]. In the last years several researches have been conducted to develop not 
only inert, but biodegradable devices. Consequentially, it is possible to embed drugs 
in the implants’ material. The drugs will be released while the polymer decomposes, 
so their effect will slowly be applied over a certain time [12, 13],
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Among the huge group of biodegradable polymers, which are favourable 
caused by their mechanical properties and biocompatibility, one possible polymer, 
which is not only bioincrt but biodegradable, is medical grade PU (PU). It degrades 
without any toxic remaining. Furthermore, solved in dimethylformamid, it is 
electrospinnable which allows to include bioactive agents or drugs in the produced 
nanofibres to increase the biocompatibility of the implant directly! 14, 15]. Nanofibres 
characterise themselves by peculiar surface properties, like orientation or fibre 
diameter, two attributes, which have shown to affect the cellular behaviour of 
various cells [16, 17]. There are several techniques to obtain nanofibres. The 
common techniques are melt processing, interfacial polymerization, electrospinning 
and molecular self-assembly. Flectrospinning is one of the facile methods to fabricate 
continuous nanofibres which provides the possibility to control the fibre diameter, the 
density of the fibres and the porosity of the membrane [18,19,20,21,22], Li et al. used 
polyaniline with gelatine to electrospun nanofibres. Their research showed persuasive 
results concerning the growth and proliferation of cardio cells (myoblasts) in rats[21]. 
The mechanical and electrical properties of the nanofibres and their capability of cell 
adhesion is depending on the material composition in the electrospinning solution! 19], 
However, there are numerous researches using the electrospinning method to produce 
nanofibres for medical uses (carried out). The fabrication of an electrospun bioactive 
PU patch for the ASD closure will be performed for the first time throughout this 
research.

1.2 Research background

Although the existing methods for ASD closure show acceptable results, the
implant remains as foreign body in the heart and might evoke rejection reactions of
the body or other complications. One huge problem is the clotting of the blood and 
accruing thrombosis. Some other complications are erosion of the surrounding tissue, 
arrhythmia, fracture of the device arm etc. [23,24, 25]. Whenever blood interacts with 
implants the following complications occur:

1. Blood components interaction with surfaces resulting in protein and water 
adsorption
2. Blood cells interfere with the surface of biomaterial
3. These actions lead to the haemostasis and coagulation [26|.
Therefore, a new approach towards biodegradable, bioactive implants may serve as 
a promising solution for these daunting challenges. The existing patches, which are
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already used for the transcatheter implementation, are mostly consisting of a Nitinol 
frame to obtain the necessary robustness. The frame is filled with a polymer mesh, 
which varies depending on the used device, e.g. Amplatzer uses polyester. The existing 
devices evoke some severe complications, e.g. thrombus formation due to the occluder 
(2.5%) [23], stroke due to late AvSO thrombosis as well as recurrent neurologic events 
(2.6%) [24] and an allergic reaction against nickel (15%) [25].

1.3 Problem statement

The existing ASD occluding devices still show drawbacks regarding several 
complications after deployment of the implant. Although the existing researches show 
acceptable results, the implant remains as foreign body in the heart and evokes adverse 
reactions of the body or other complications. One huge problem is the blood clotting, 
embolization and accruing thrombosis. Other complications, as mentioned above are 
erosion of the surrounding tissue, arrhythmia, fracture of the device arm, or toxicity 
of the used materials [23, 24, 25]. Since the majority of these complications are due 
to the material there is still a research on the market for an ASD occluder showing 
less drawbacks. Compared to the existing methods, this research uses a degradable 
polymer patch to realise a complete decomposition of the implant. The bioactive 
agents ensure, in the case of chitosan, the stability of the patch and an improvement 
of the tensile strength of the patch as well as it is favourable for the adhesion of 
endothelial cells. The heparin might improve the complication evoked by the existing 
devices, which are the blood clotting and thrombus formation. As heparin is used for 
urgent anti-coagulation, it may have the same effect as it is deployed slowly over the 
degradation of the patch. Once the hole is covered by a new, regenerated tissue, the 
device is no longer needed; thus, it is ideal if the device is fully absorbed by the body 
when the healing is completed. Furthermore, the ease of use of electrospinning of PU, 
the low costs as well as the easy available chitosan, collagen and heparin are in favour 
for the development. Hence, it is a reasonable approach for replacing the existing 
materials involved in ASD closure.
Statements:

1. Continuous search on the market for new bioactive and biodegradable 
patches to improve the ASD closure device.
2. Developed patch should possess desirable physico-chemical properties to attain the 
use in an ASD closure device.
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3. The patch used in an ASD device needs to show good blood compatibility.
To solve this issue, several ASD occluding devices have been developed and explored 
but the research for an universal ASD occluding device, which does not evoke any 
adverse reactions or long-term complications, is still carried out.

1.4 Objectives of the Study

This research is to propose the development of a novel biodegradable, bioactive 
patch for congenital atrial septal defect closure. The following are the objectives of the 
study:

1. To fabricate an electrospun PU composite patch comprising chitosan and 
collagen coated with heparin (PU-Ch-Co-Hp)
2. To characterize the physico-chemical properties of the developed patch
3. To investigate and compare the in vitro blood compatibility of the PU 
composite patch with PU

1.5 Scope of work

First, the concentration of the PU, the bioactive substances like chitosan and 
collagen have to be optimised. Further, suitable solvents have to be identified in order 
to make a homogeneous solution for spinning. In addition, the parameters concerning 
the spinning such as the applied voltage, delivery rate, target volume as well as the 
distance between the target and collector have to be optimised. Subsequently, the 
patches are manufactured and dried for further use. The heparin coating is done at last 
to obtain a complete composite PU patch.
The second and third steps involve the analyses of the properties of the developed 
patch. The second part includes the surface characterization of the patch with various 
physico-chemical analyses and the biodegradability test. The physico-chemical 
characterisation comprises the measurement of the contact angle, functional group 
analysis using Fourier transform infrared spectroscopy, surface characterization using 
the scanning electron microscopy. The weight loss of the patches will be measured in 
simulated in vitro conditions in a defined time span to analyse the degradation rate of 
the material. In the third part, the blood compatibility will be studied to investigate 
whether there are any adverse reactions to the composite patch. The following in vitro
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tests namely activated partial thromboplastin time (APTT). prothrombin time (PT), 
haemolysis ratio and platelet deposition studies will be performed. By assessing APTT 
and PT, it the efficiency of the chitosan-collagen and heparin coated PU patches against 
blood coagulation can be determined. Haemolysis ratio is the measurement of damage 
incurred to the red blood cells when they come in contact with the PU-composite. The 
platelet deposition studies will qualify the number of platelets adhered to the surface 
of the PU-ChNP-Co-Hp patch once the blood interacts with it.

1.6 Significance of the study

One out of a hundred newborn children is affected of a congenital heart defect. 
In adulthood the number of untreated defects is only little less. There are different 
kinds of congenital heart defects. One of the most common defects is the ASD. There 
are several complications linked to an untreated ASD like right heart enlargement, 
arrhythmia, stroke, hypertension in the pulmonary arteries [9]. The two common ways 
to treat an ASD are the surgical and the transcatheter occlusion. The transcatheter 
closure is less invasive and has a shorter time of convalescence [27]. However, there 
are several complications linked to the existing closure devices, e.g. thrombosis 
formation, tissue erosion and adverse reactions, which indicates the necessity of further 
development of the existing devices [23, 24, 25]. Another important point is the 
reduction of device costs, as well as the long-term treatment costs of post surgery 
complications, when the above mentioned device failures occur. The new developed 
patch made of PU-ChNp-Co-Heparin might lead to a better biocompatibility compared 
to the PU patch. In a broader view it could result in a new bioresorbable product, 
solving evoked complications by the existing ASD closure devices
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