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ABSTRACT 

 

 

 

 

The needs for reliable and accurate damping properties are necessary in order 

to produce a good simulation and improve a major source of uncertainty at the design 

stage.  Thus, an experimental investigation was conducted to find damping property 

of structure.  In this study, three different plates were used to determine their 

damping properties.  Experimental modal analysis using impact hammer and 

accelerometer was performed to acquire the frequency response function (FRF) of 

test samples.  Damping properties were extracted from FRF using polyreference 

least-squares complex frequency-domain method (PolyMAX) and polyreference 

least-squares complex exponential time-domain method (LSCE).  The results reveal 

that for lightly damped structure, the damping ratio from LSCE and PolyMAX are 

comparable.  However, for heavily damped structure, the damping ratio from LSCE 

is slightly higher than damping ratio from PolyMAX.  The results also show that 

PolyMAX is better than LSCE in term of stabilisation diagram.  Finally some 

improvements on the experimental method have been proposed in order to achieve 

accurate damping property. 
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ABSTRAK 

 

 

 

 

Keperluan untuk mendapatkan sifat resapan yang persis dan jitu adalah 

mustahak untuk memperoleh simulasi yang tepat dan mengurangkan ketidakpastian 

dalam proses rekabentuk.  Oleh itu, eksperimen telah dijalankan untuk menentukan 

sifat resapan struktur.  Dalam ujikaji ini, tiga plat yang berbeza telah digunakan 

untuk menentukan sifat resapannya.  Eksperimen ujikaji modal telah dijalankan 

untuk memperolehi data dalam bentuk fungsi tindak balas frekuensi (FRF).  Sifat 

resapan diperolehi melalui FRF dengan menggunakan kaedah “polyreference least-

squares complex frequency-domain method” (PolyMAX) dan “polyreference least-

squares complex exponential time-domain method” (LSCE).  Hasil keputusan 

menunjukkan bahawa untuk struktur yang rendah sifat resapan, nisbah resapan yand 

diperolehi melalui LSCE dan PolyMAX adalah setanding.  Walau bagaimanapun, 

untuk struktur yang tinggi sifat resapan, nisbah resapan dari LSCE adalah sedikit 

lebih tinggi dari PolyMAX.  Hasil keputusan juga menunjukkan bahawa PolyMAX 

lebih baik dari LSCE jika dibandingkan dari segi kestabilan.  Akhir sekali, beberapa 

ubahsuaian kepada kaedah eksperimen telah dicadangkan bagi memperolehi sifat 

resapan yang lebih tepat.   
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

 

The chapter begins by reviewing background of the problem before move 

into the problem statement.  Then, the objective of the study and research question is 

stated clearly.  Next, the scope and key assumptions used in this study is clearly 

defined.  The importance of the study and the organization of this report are briefly 

explained before summarizing this chapter at the end.  

 

 

 

 

1.2 Background of the Problem 

 

 

Vibration analysis represents an important research topic in the context of 

structural and mechanical engineering.  Most of the time, vibration is undesirable and 

it is important to reduce it by dissipation its energy or damping.  

 

Damping can be defined as the phenomenon by which mechanical energy is 

dissipated in dynamic systems [1].  High energy dissipation will probably have low 

vibration amplitudes.  Damping is mostly associated with the change of mechanical 

energy into thermal energy.  

 

The recent developments in the fields of building structures have provided 

motivation towards developing newer and more efficient materials which have 

expedited the construction of lighter and more flexible buildings.  These buildings 
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are known to be highly responsive to dynamic loadings [2]. Therefore it has become 

more crucial to accurately determine dynamic properties which are the natural 

frequencies and damping. 

 

Besides that, in automotive industry, ride comfort is gaining more 

prominence in recent years.  Ride comfort can be defined as occupant’s overall 

comfort and well-being during vehicle travel.  Generally it involves all the vibration 

phenomena which act on the occupants of a vehicle.  Since the sources of the 

vibration are outside of the passenger compartment, damping properties would help 

to hinder the transmission of these disturbances into the passenger compartment area 

[3]. 

 

In finite element analysis (FEA), the damping properties are important to 

simulate responses and resulting spectra.  This has been clearly seen in the case of 

shock response spectrum where the amplitude is significantly affected by the 

damping of the response.  

 

Since the damping property cannot be deduced from other structural or 

material properties, it becomes the most difficult dynamic property to predict at 

design stage.  Therefore the damping can be measured only by conducting dynamic 

testing on a structure which is known as modal testing.  The needs for reliable and 

accurate damping properties are necessary to have in order to produce a good 

simulation and improve a major source of uncertainty at the design stage. 

  

 

 

 

1.3 Statement of the Problem 

 

 

Since the damping properties are determined from modal parameter, the 

accuracy of the measured data is of paramount importance in experimental modal 

testing.  The main challenge faced by many experiments in modal testing is the 

variations in modal test data which may be obtained by using different measurement 

techniques on a particular test structure [4].  Variations in modal test data have led to 

inconsistency in determining damping values. 
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Typically, the modal parameter obtained from experimental modal analysis 

may have low quality as a result of poor techniques and instrumentation used in the 

measurement.  The main disadvantage using accelerometer to measure the response 

is due to mass loading effects.  It is the mass relative to the effective mass of the 

structure where it is mounted play often an important role.  An accelerometer weight 

at a very stiff location on a structure is different than that same accelerometer 

mounted on a thin lightweight panel in the same structure.  Besides that, mass 

loading effects play a significant role when using a modal shaker [5]. 

 

 The process of identifying modal parameters is commonly referred to as 

curve fitting.  Therefore the accuracy of estimation damping values are also depends 

on which curve fitting technique is used.  Part of this study involves in investigating 

the variation in damping values using different curve-fitting techniques.  

 

 

 

 

1.4 Objective 

 

 

The research objective of the study is to identify the damping properties of 

plates of several materials. 

 

 

 

 

1.5 Research Question 

 

 

The main research question is to determine which curve fitting algorithm is 

suitable for all type of material.   

 

 

 

 

1.6 Scope and Key Assumptions 

 

 

The scope of this study is limited to: 

 Experimental approach using vibration technique. 
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 Aluminium plate, glass fibre composite plate and Kevlar fibre 

composite plate are used to identify the damping properties. 

 The boundary condition of the test samples are set to be free - free 

condition. 

 Two curve fitting methods are used: polyreference least-squares 

complex frequency-domain method (PolyMAX) and polyreference 

least-squares complex exponential time-domain method (LSCE). 

 

 

 

1.7 Importance of the Project 

 

 

The contribution of this study is obvious as the resulting outcomes can be 

capitalized as guidelines to achieve reliable and accurate damping properties which 

will help to simulate dynamic response of structures. 

 

 

 

 

1.8 Organization of the Report 

 

 

This project report consists of six chapters; the first chapter gives an 

overview of the subject by giving a background on the research subject and then 

followed by a statement of the problem.  The second chapter provides a detailed 

review on the subject matter providing early literature to the very recent 

developments in the research area.  The third chapter explains the related theory 

related to damping and modal analysis. Chapter four provides the methodology 

which this research is conducted upon. Experimental results and discussion are 

detailed in chapter five. Finally, chapter six concludes the study and provides 

recommendation for future research. 
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1.9 Summary 

 

 

One of the most effective ways to reduce vibration problem is to have 

damping mechanism.  The aim of the study is to determine reliable and accurate 

damping properties.  
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