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ABSTRACT 

An investigation on the adequacy of different 2-equations turbulence models to 

characterize the non-premixed meso-scale swirl flow combustion is presented in this 

paper. The RAS 2-equations turbulence models studied include the standard k-ε model, 

RNG (Renormalization Group) k-ε and SST (Shear Stress Transport) k-ω turbulence 

models. The open source CFD software openFOAM is utilized to characterize high 

resolution flow feature and to determine simulated results of the turbulence models 

investigated that best capture the combustion characteristics in terms of temperature 

prediction at various equivalence ratios and graphical representation of the stoichiometric 

mixture fractions that can be correlated to the outlet flame feature produced in 

experimental setup as well as to generate comparison of the temperature and velocity 

profiles captured along the length of the meso-scale combustor. The examination of the 

velocity and pressure contour also reveal that the velocity decays along the length of 

combustor with prediction of adverse velocity in centre axis near the outlet induced by the 

pressure gradient between the lower and upper half of the combustor denoting one of the 

main feature of the swirl flow. The simulated results show that SST k-ω turbulence models 

produces the highest proximity with the experimental data with the lowest overall 

percentage error around 4.26% registered while the stoichiometric mixture fraction 

graphical presentation measured in terms of its development of surface features with 

increasing equivalence ratio demonstrates that SST k-ω turbulence model produces the 

most steady development among the other tested turbulence model against the outlet flame 

features.  
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ABSTRAK 

Siasatan terhadap kecukupan model 2-persamaan pergolakan yang berbeza untuk 

mencirikan meso-besaran pembakaran aliran pusaran bukan pracampuran dibentangkan 

dalam kertas ini. RAS model 2-persamaan pergolakan dikaji termasuk model k-ε 

standard, RNG (renormalization Group) k-ε dan SST (Shear Stress Pengangkutan) k-ω 

model pergolakan. Sumber terbuka CFD perisian openFOAM digunakan untuk 

mencirikan ciri aliran resolusi tinggi dan untuk menentukan keputusan simulasi model 

pergolakan disiasat yang menangkap terbaik ciri-ciri pembakaran dari segi ramalan suhu 

pada pelbagai nisbah kesetaraan dan perwakilan grafik pecahan campuran stoikiometri 

yang boleh dikaitkan dengan ciri outlet api dihasilkan dalam persediaan eksperimen dan 

juga untuk menjana perbandingan suhu dan halaju profil ditangkap bersama-sama 

panjang pembakar meso-besaran. Pemeriksaan halaju dan tekanan kontur juga 

mendedahkan bahawa halaju mereput di sepanjang pembakar dengan ramalan halaju 

buruk dalam paksi pusat berdekatan dengan salur keluar yang disebabkan oleh kecerunan 

tekanan antara bahagian bawah dan atas pembakar menandakan salah satu daripada ciri-

ciri utama aliran pusaran. Keputusan simulasi menunjukkan bahawa SST model k-ω 

pergolakan menghasilkan jarak tertinggi dengan data eksperimen dengan ralat peratusan 

keseluruhan yang paling rendah sekitar 4.26% berdaftar manakala campuran pecahan 

persembahan grafik stoikiometri diukur dari segi pembangunan berprestij permukaan 

dengan nisbah setara yang semakin meningkat menunjukkan yang SST model k-ω 

pergolakan menghasilkan pembangunan yang paling mantap di kalangan model gelora 

menguji lain terhadap ciri-outlet api. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research background 

Combustions at small scale are collecting growing attention nowadays along with 

the comprehensive potential developments of various applications including that of 

electrical power, heat generation and mechanical power sources [1,2,3,4]. For example 

the possible applications are actuators, sensors, portable electrical devices, rovers, robots, 

thrusters, unmanned air vehicles, mechanical back-up power source for air conditioning 

system in hybrid vehicles, industrial heating devices as well as freight transportation. 

These, micro and mesoscale combustors are designed to cater for the power generations 

of miniature devices.  Thus, the concept of the applications mentioned is based on the 

higher densities hydrocarbon fuels than the existing contemporary batteries which only 

exhibiting energy densities of about 0.20Kw/Kg that can only support a few hours of 

notebook computers and video cameras.  Moreover, modern batteries will require several 

hours to be fully recharged while exhibiting limiting rechargeable cycles.  Besides the 

increasing demands for micro and mesoscale combustion devices, the working principles 

of combustion at that level also gathers interests through the technical aspects of the 

combustion to solve problems such as quenching issue due to large surface to volume ratio 

of small scale devices. Thus, accountable towards the general approach, the flame 

thickness should be reduced so that scale of the combustor reduces. In order to fulfil these 

objectives, several experimental techniques such as intensification of the pressure for 

reducing the molecular distance, application of special types of fuel or oxidants used  for
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intensifying burning rate, and the application of catalytic reactions for preventing 

termination of the chemical chain reaction have been implemented [5,6] In addition good 

chemical and thermal stability managements are needed to produce stable combustion at 

the level of meso or microscale combustion. Hence, swirl flow combustion was introduced 

and study in-depth promote better air/fuel turbulent mixing in these micro-combustors. 

Closed-system swirling flows are widely used in industrial combustion applications. In 

these applications, the internal recirculation zone created by the negative pressure gradient 

and vortex dissipation of the swirling flows can further escalate the mixing of air and fuel, 

while harbouring the flame within the combustion zone.    

1.2 Problem statement 

 

In previous studies [7,8] the experimental work carried out on stable flame region 

results in the production of different combination of equivalence ratio and their respective 

air mass flow rate ranging from 40 mg/s to 170mg/s. With the knowledge of stable flame 

region in the investigated asymmetric meso-scale combustor, important findings such as 

the heat loss and generation according to different air mass flow rate, measurement of 

different outlet flame temperature with varying equivalence ratio and relationship of swirl 

flame at different equivalence ratio are reported. The computational work carried out 

using the viscous model encompassing standard k-ε and RNG k-ε lack the argument 

regarding the accuracy of the turbulence model used to characterize the meso-scale 

combustion. Other CFD models employed in previous research also include the discrete 

ordinate in radiation model and eddy dissipation turbulence model which is part of the 

reaction model in Ansys, in which all the documented results do not show comparison in 

terms of high resolution of combustion characterization as well as the conclusion on the 

turbulence model that best describes the combustion behaviour in meso-scale swirl flow.  

The computational resources of reaction and radiation model in large computations are 

expensive in commercial softwares, hence high fidelity simulation requires the expense 

of large parallelization of the computation which is costly using commercial software. In 

addition, no simplification on CFD approach while retaining the relevancy in relation to 
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the experimental results have produced in previous study as the reaction mechanism 

includes detailed chemistry which can be costly commutatively. 

It is noted that previous studies [7,8] focused on the chemical efficiency of 

combustion by direct measure of the exhaust product via experimental procedure but 

combustion is also a chemical process in which study of the interactions between the 

species are important especially in meso-scale combustion where the residence time of 

species is relatively shorter than that of chemical time.  In addition, the chemical kinetics 

aspect of the meso-scale combustion is not addressed in the previous studies [7,8].  Thus, 

it is crucial to establish the chemical mass species distribution profile throughout the 

combustion process along with the rate of combustion chnges within the meso-scale 

combustor in order obtain the behaviour of the combustion species inside the combustor.  

It should be highlighted that the computational approach in the previous studies 

[7,8] involved the usage of commercial computational fluid dynamics software which is 

not cost free in terms of licencing. Hence, open source computational approach is 

important for future extended computational research on meso-scale combustor intended 

for any engineering professionals at zero cost since there is no licensing cost imposed on 

the openFOAM.  Furthermore, previous studies lack computational approach in 

investigating the fuel-air mixing in meso-scale combustor as well no work documented 

for the proposed turbulence models that best describes the combustion in meso-scale 

combustor.
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1.3 Project objectives 

 

The following are the project objectives of the present study entitled “Prediction 

of Meso scale combustion using different turbulence model”  

 

1. To analyze the combustion characteristics of a meso-scale combustor using 

CFD. 

 

2. To study the effects of turbulence model on the prediction of combustion 

characteristics. 

1.4 Scope of the project 

 

The scope of the project defined below in this section below set the domain of the 

results expected from the project objectives in order to achieve the declared objectives. 

 

1. Validation of prerequisite characteristics of the meso-scale    combustor by 

referring to reference publications [7,8] which include the relationship 

between temperature, species fraction profile, equivalence ratio and 

thermal output.  

2. Investigate the differences in terms of combustion characteristic of the 

meso-scale combustion utilizing the standard k-ε, RANS k-ε and SST k-𝜔 

turbulence models with turbulence properties comparison included. 

It should be highlighted that the CFD simulation of the meso-scale combustor is 

within adiabatic temperature without modelling the heat loss via the wall and the meshing 

algorithm will not be investigated in depth thus the simulation will adopt the simplest 

mesh generation method using gmsh software.  
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1.5 Thesis outline 

 

The thesis will cover 5 chapters.  Chapter 2 and 3 will entail the literature review 

and methodology respectively. Chapter 2 will provide insights towards the experimental 

and computational knowledge associated the current work while chapter 3 will outline the 

computational approach taken to conduct the CFD simulation via openFOAM.  Chapter 4 

will comprise of the results and discussions section where high resolution CFD results 

will be discussed to show the features in swirl flow combustion computatively as well as 

providing the validation results and tested turbulence models comparison results followed 

by engineering meaningful discussion.  In chapter 5, the whole chapter will be segmented 

into 2 sections namely the major conclusions drawn from the master project and the future 

works that should be the sequential research focusing on improving the current work in 

this master project. 
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