

ANALYZING PERFORMANCE OF OPENSTATE IN SOFTWARE DEFINED

NETWORK WITH MULTIPLE FAILURES SCENARIOS

Babangida Isyaku

UNIVERSITI TEKNOLOGI MALAYSIA

ANALYZING PERFORMANCE OF OPENSTATE IN SOFTWARE DEFINED

NETWORK WITH MULTIPLE FAILURES SCENARIOS

BABANGIDA ISYAKU

A dissertation submitted in partial fulfillment of the

requirements for the award of the degree of

Master of Science (Computer Science)

Faculty of Computing

Universiti Teknologi Malaysia

JANUARY, 2017

iii

DEDICATION

I dedicated this research work to my late Father Alh Isyaku Alhassan May Almighty

Allah make Jannatul Firdausi to be his final Abode and to my love Mother.

iv

ACKNOWLE

DGEMENT

ACKNOWLEDGEMENT

 I first thank my Creator, Cherisher and Sustainer for His countless

blessings on me. Among the blessings is enabling me to successfully complete this

dissertation and the master programme in general.

I like to express my sincere appreciation to entire Management of Faculty of

Computing (FC) and Universiti Teknologi Malaysia (UTM) community for providing

me with all facilities and resources throughout the research work. Without their

supports these journeys would have been difficult one.

Secondly, I also express my sincere gratitude to my thesis supervisor, Assoc.

Prof. Dr. Mohd Soperi Mohd Zahid for his immense support and guidance throughout

the research work. Our weekly meetings played an important role in my continuous

progress and helped me to structure my work schedule.

It is with great pleasure that I take this opportunity to also thank my fellow

classmates. Musa wakil Bara, Isah Sani Birnin Gwari and Ibrahim Jafar for the group

activities we shared together gave me moments of tranquillity and helped refocus back

on my study.

I couldn't possibly forget to express my appreciation to the management of Sule

Lamido University, kafin Hausa Jigawa State Nigeria. Especially to the Vice

chancellor (Prof. Abdullahi Yusuf Ribadu) and DVC (Prof. Lawan sani Taura) for all

that they have done for me, May Almighty Allah reward them abundantly.

Finally, I deeply thank my parents, my brothers for their endless support and

unwavering love and prayer. Whenever I felt dim and tired, I could always count on

their heart-warming encouragements. May Allah protect and guide them.

v

ABSTRACT

Software Defined Network (SDN) is an emerging network that decouples the

control plane and data planes. Like other networks, SDN undergoes a recovery process

upon occurrences of link or node failures. Openflow is considered as the popular

standard used in SDN. In Openflow, the process of detecting the failure and

communications with controller to recompute alternative path result to long recovery

time. However, there is limit with regards time taken to recover from the failures. If it

takes more than 50 msec, a lot of packet will be lost, and communication overhead and

Round Trip Time (RTT) between switch – controller may be high. Openstate is an

Openflow extension that allows a programmer to specify how forwarding rules should

be adapted in a stateful fashion. Openstate has been tested only on single failure. This

research conduct experiment based on Openstate pipeline design that provides

detections mechanism based on switches periodic link probing and fast reroute of

traffic flow even when controller is not reachable. In this research, the experiments use

Mininet simulation software to analyse and evaluate the performance of Openstate

with multiple failure scenarios. The research has compared Overhead communication,

Round Trip Time (RTT) between switch – controller and number of packet loss with

Openflow and Openstate. On the average, in Openstate packet loss is zero when the

recovery time is less than or equal to 70 msec while communication overhead involves

60 packet-in. In Openflow, packet loss is zero when the recovery time is less than or

equal to 85 msec while communication overhead involves 100 packet-in. Finally, the

average RTTs for Openstate and Openflow are 65 msec and 90 msec respectively.

Based on the results obtained, it can be concluded that Openstate has better

performance compare to Openflow.

.

vi

ABSTRAK

ABSTRAK

‘Software Defined Network’ (SDN) adalah satu rangkaian baru yang

memisahkan satah kawalan dan satah data. Seperti rangkaian lain, SDN menjalani

proses pemulihan selepas hubungan antara dua nod terputus atau nod tidak berfungsi,

Openflow adalah suatu piawaian yang digunakan dalam SDN. Dalam proses

pemulihan, Openflow mengesan kegagalan dan menyampaikan maklumat itu kepada

pengawal untuk mengira hasil jalan alternatif dan boleh menyebabkan masa pemulihan

yang panjang. Walau bagaimanapun, terdapat batasan bagi masa yang diambil untuk

pulih daripada kegagalan. Jika ia mengambil masa lebih daripada 50 milisaat, banyak

paket akan hilang serta beban komunikasi dan masa pergi balik (Round trip time -

RTT) antara suis dan pengawal akan menjadi tinggi. Openstate adalah lanjutan

Openflow yang membolehkan pengaturcara untuk menentukan bagaimana peraturan

penyampaian perlu disesuaikan dengan cara yang dilengkapi keadaan (Stateful).

Openstate telah diuji hanya untuk satu kegagalan. Kajian ini menjalankan eksperimen

berdasarkan reka bentuk talian paip Openstate yang menyediakan mekanisme

pengesanan berdasarkan penyelesaian suis hubungan berkala dan pertukaran laluan

pantas aliran trafik walaupun pengawal tidak dapat dihubungi. Eksperimen-

eksperimen dibuat menggunakan perisian Mininet untuk menganalisis dan menilai

prestasi Openstate dalam senario kegagalan berbilang. Kajian ini meneliti beban

komunikasi, RTT antara suis-pengawal dan bilangan kehilangan paket bagi Openflow

dan Openstate. Secara purata, kehilangan paket Openstate adalah sifar apabila masa

pemulihan adalah kurang atau sama dengan 70 milisaat dan beban komunikasi

melibatkan 60 “packet-in”. Bagi Openflow, kehilangan paket adalah sifar apabila masa

pemulihan adalah 85 milisaat atau kurang dan beban komunikasi melibatkan 100

“packet-in”. Begitu juga, purata RTT untuk Openstate dan Openflow masing – masing

adalah 65 milisaat dan 90 milisaat.

.

vii

TABLE O

F CONTENTS

TABLE OF CONTENT

CHAPTER TITLE PAGE

DECLARATION i

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES xi

LIST OF FIGURES xii

LIST OF ABBREVIATIONS xiv

LIST OF APPENDICES xvi

1 INTRODUCTION 1

1.1 Overview 1

1.2 Problem Background 2

1.3 Problem Statement 7

1.4 Goal 7

1.5 Objectives 8

1.6 Research Scope 8

1.7 Significant of the Research 9

1.8 Summary 9

2 LITERATURE REVIEW 11

2.1 Introduction 11

2.2 Software Defined Networking 12

viii

2.2.1 Application Layer 13

2.2.2 Controller Layer 13

2.2.2.1 SDN Controller Operational Mode 16

2.2.3 SDN Infrastructure Layer 19

2.3 Failure Management in Software define networking 20

2.3.1 Failure Detection Mechanism 20

2.3.2 Failure Recovery in Software defined network 21

2.4 Failure recovery using Openflow 22

2.5 Openstate 26

2.5.1 Recovery schemes in Openflow 1.3+ 31

2.6 Single Failure recovery using Openflow 32

2.7 Multiple failure Using Openstate 33

2.8 Differences between Single and multiple failures 34

2.8 Survey of related work of failure Recovery in SDN 35

2.8.1 Detour Planning for fast and reliable

Failure recovery in SDN with Openstate 36

2.8.2 Software based Fast Failure Recovery

for resilient Openflow 37

2.8.3 Fast Recovery in SDN 38

2.8.4 Proactive failure recovery in Openflow

 based SDN 38

2.8.5 Fast failure recovery for in-band

Openflow networks 39

2.8.6 Recovery scheme using Software

based in Openflow network 39

2.9 Research Tools and Instruments 40

2.9.1 Mininet Network Simulation 41

2.9.2 OMNeT 43

2.10 Research Taxonomy 45

2.11 Summary 46

3 RESEARCH METHODOLOGY 47

3.1 Introduction 47

ix

3.2 Problem formulation and Solution Concept 48

3.3 Research Framework 48

3.3.1 Phase 1: Failure Scenarios 50

3.3.2 Phase 2: Implementation of the

Experiment and simulation 50

3.3.3 Phase 3: Performance and Evaluation 53

3.4 Measurement tools 54

3.4.1 Wireshark 54

3.5 Overall Research plan 55

3.6 Research Environment 56

3.6 Experimental scope 57

3.7 Summary 58

4 IMPLEMENTATION OF EXPERIMENT

AND SIMULATION 59

4.1 Introduction 59

4.2 Overview of Experiment Scenarios 60

4.3 Implementation Platforms 61

4.4 Network Simulation 62

4.3.1 Openstate (ryu) Controller 67

4.3.2 Forwarding packet at data plane 68

4.3.3 Failure Recovery Process 70

4.5 Experimental setup 70

4.6 Data set 71

4.7 Summary 76

5 EXPERIMENTAL RESULT AND DISCUSSION 77

5.1 Introduction 77

5.2 Overview of the Experiment Analysis 77

5.3 Experiment Scenario 78

5.3 Overhead Communication 79

5.3.1 Experiment 80

5.4 Number of Packet Loss 83

x

5.5 Round Trip Time 84

5.6 Discussion 87

5.6 Summary 89

6 CONCLUSION AND FUTURE WORK 90

6.1 Introduction 90

6.2 Contribution of the study 90

6.3 Assumptions 91

6.4 Future work 91

6.5 Challenges 92

6.6 Summary 93

REFERENCES 94

APPENDIX 100

xi

LIST OF TABLES

TABLE NO. TITLE PAGE

1.1: Comparison between Openflow and Openstate 4

2.1: Controller Classification (Kreuzt et al. 2014) 15

2.2: Features of different controller 18

2.3: Failure recovery time of open flow switches

(Steven et al. 2014) 25

2.4: Survey of related work 35

2.5: Differences between Mininet and OMNeT 43

3.1: Overall Research plan 55

3.2: Hardware and software requirement 57

3.3: Experimental scope 58

4.1: Experiment Scenario 60

4.2: Failure Scenario Setting 64

4.3: Configurable timeout 69

4.4: Summary of experiment set up 71

4.5: Data set Description 75

xii

LIST OF FIGURES

FIGURE NO. TITLE PAGE

1.1 Network topology with multiple failure 6

2.1 Architecture of Software defined

networking (ONF 2015). 12

2.2 SDN control platforms: elements

(Kreutz, D et at al. 2014). 14

2.3 Distributed controllers: east/westbound APIs

 (Kreuzt et al. 2014) 15

2.4 Proactive and Reactive controller flow 17

2.5 Out of band and in band control

(Steven et al., 2015) 26

2. 6 State update and transition (Antonio Capone, 2015) 28

2. 7 State table architecture (Capone et al., 2014) 29

2.8 Openstate Stateful SDN data plane

(Santa clara, 2014) 30

2.9 Packet forwarding in Openflow

(Guillermo Romero, 2012) 33

2.10 Admission control of flow (Lee at et al, 2014) 40

2.11 Simulating real network in mininet

(Keti & Askar, 2015) 42

2.12 Research taxonomy 45

3.1 Research framework 49

3.2 Openstate Stateful pipelining Architecture 51

3.3 Multiple failure scenario flow 52

xiii

4.1 Failure scenario 63

4.2 Require input file for network design 65

4.3 ryu controller flow in mininet 66

4.4 Set of link with cost attached (Orlowski et al. 2009) 72

4.5 Set of primary path (Orlowski et al. 2009) 73

4.6 Network demand (Orlowski et al. 2009) 74

5.1 Overhead Communication Scenario 1 81

5.2 Overhead Communication scenario 2 82

5.3 Overhead Communication Scenario 3 83

5.4 Packet loss 84

5.5 Round Trip Time Scenario 1 85

5.6 Round trip time Scenario 2 86

5.7 Round trip time Scenario 3 87

xiv

LIST OF ABBREVIATIONS

ACK - Acknowledgement

API - Application Programming Interface

ARP - Address resolution protocol

BFD - Bidirectional forwarding detection

CPU - Central Processing Unit

ETH - Ethernet

FLI - File Location identification

FNSS - Fast Network Simulation setup

FSM - Finite State Machine

HB - Heartbeat

ID - Identification

IDE - Integrated Development tool

IP - Internet protocol

MAC - Medium Access Control

MB - Megabyte

MCA - Monitoring Cycle Algorithm

MILP - Mixed integer linear programming

MPLS - Multiprotocol Label Switching

MS - Millisecond

NA - Not available

OF - Openflow

OFPT - Openflow packet

ONF - Open Network Foundation

OS - Operating system

OVS - Open V switch

xv

PKT - Packet

RAM - Random Access Memory

REST - Representation State transfer

RTT - Round Trip Time

RYU - means flow in germany

SDN - Software Defined Networking

SSH - Secure Shell

SYN - Synchronization

TCAM - Ternary Content Addressable Memory

TCP - Transport Control Protocol

UDP - User datagram Protocol

VM - Virtual Machine

XML - eXtensible Markup Language

xvi

LIST OF APPENDICES

APPENDIX TITLE PAGE

A1. Sample of code for installing flow entry in switches 100

A2. Port Description status with failure 101

B1 Sample of Packet-in for Multiple failure 103

C Sample of Request with corresponding failures 105

D Sample of capture results using Wireshark 106

CHAPTER 1

INTRODUCTION

1.1 Overview

Software defined networking is a new paradigm that emerge to offer simplicity

over a network through the decoupling of control plane from the underlying

forwarding plane (data plane) (Lee Li et al. 2014). It offers a single entity called a

controller to have a centralized abstract view of the network. Moreover, it creates

flexible and dynamic architecture that provide simple network manageability and

reliability.

Openflow is largely the most adopted abstraction for the data plane with its

match action rules in flow tables (McKeown et al., 2008). Current Openflow

abstraction presents some fundamental drawbacks that can prevent an efficient and

performing implementation of traffic rerouting schemes. As a matter of fact, in

Openflow adaptation and reconfiguration of forwarding rules (i.e. entries in the flow

tables) in the data plane pipeline can only be performed by the remote controller,

posing limitations on the granularity of the desired monitoring and traffic control due

to the overhead and latency required.

Therefore, due to the ineffectiveness of the Openflow to include effective

mechanism for fast failure recovery, several efforts from research community to

2

extend the Openflow specification 1.3 to OpenState have been made in the recent years

(A Capone & Cascone, 2014). An Openstate is an extension of Openflow 1.3 that have

more additional features which enable the remote controller to enforce control logic to

forwarding plane (switches). Openstate protocol has been tested on single failure but

is yet to be tested on multiple failure scenarios.

1.2 Problem Background

Software defined networking (SDN) is considered as vital technology for the

years to come, Lee et al. (2014a) consider it as next future generation network. The

central controller is an important entity of SDN. It performs functionality such as

monitoring, modification and computation of the forwarding rules. Moreover, it allows

the flexibility to directly configure the infrastructure devices (data planes) (Adrichem

et al. 2014a).

There is no doubt that the controller offers great advantage to the network, but

there are some overhead that will be involved to restore the network back to

operational state, after the occurrences of failures. Failures may occur due to several

events, such as software or hardware failure, and node or link could be down due to

fibre cut or interface break. In the earlier version of Openflow 1.0 it supports only one

single flow table and secure channel to controller. When a failure occurs, the switch

that detect the failure send notification to the controller through packet in message.

The controller then locates the point of the failure and computes new suitable path and

update the flow table of the affected switch with the new path. Therefore, Openflow

1.1 onward emerge with additional features which support multiple table, incorporated

with fast failover group table functionality to speed up local failure detection and

recovery without imposing much extra processing load on controller. The fast failover

group table extend Openflow configuration rules that allows monitoring and

3

forwarding of packet at switch label. The group table is pre-configured to monitor the

status of switch port. The table has several action buckets populated with different

forwarding action. Therefore, when failure occurs, the switch that detect the failures

perform lookup in the table and switchover to alternative path. In case of no alternative

path found on the node that detect the failure, crank bank signalling is performed to

keep rerouting the packet to neighbouring node until alternative path is found.

Obviously, with the fast failover, controller will be relieved with some extra processing

load but the recovery time may increase due to the rerouting of packet using the

crankbank signalling. Secondly with the Openflow fast failover detect node and

reroute node are always the same. Unfortunately, such a solution is not always feasible,

as it strongly depends on topology and capacity constraints.

 In Openstate, the fault detection event is not immediately communicated to

controller but rather the switch that detect the failure tag the data packet and forward

it back to a node called the reroute node. The reroute node will then execute state

transition and find a suitable new path that can be used to deliver future data packets

and inform the controller about the topology changes.

Therefore, the main activities to recover the network after failure include the

detection time and restoration time. The restoration time includes the propagation time

to notify the central controller about the event, path re-computation and

reconfiguration of the network by the central controller (Adrichem et al. 2014b,

Sharma & Staessens, 2013). Adrichem et al. (2014c) further emphasize in Openflow

1.0 network, the time taken for the controller to initiate path restoration is over

100msec excluding detection time. According to another author Lee et al. (2014b) it

takes from 260 msec to 310 msec for Openflow controller to set up the recovery path

after failure detection. This range of time is considered too long as the acceptable time

required by provider network is at most 50 msec (Adrichem et al., 2014d). Hence,

several efforts have been made recently to reduce the restoration time of Openflow

controller.

4

 Goransson & Black (2014), Asten, (2014) has identified that the long

restoration time may due to the computational load on the controller that is too much.

Furthermore, Lee et al. (2014) emphasize that bottleneck at the controller increases as

the network size grows larger. Thus, there is need for an appropriate mechanism to

minimize the load on the Openflow controller.

Openstate is an extended version of Openflow 1.3. It is introduced to minimise

the computational load on the controller and have the facility for quick failure

recovery. In Openflow 1.0 when a failure occurs, the controller must recompute the

new path but in Openflow 1.1 onward crankback signalling can be performed without

immediately communication to controller whereas in Openstate data packet are tagged

and bounced it back to the reroute node to enable detour. Thus, the Openstate network

has less load than the Openflow network. Openstate network also promote quicker

recovery time than Openflow network because the new path can quickly be enabled

by the switch without consulting the controller. The delivery of future data packets

using the new path can be activated without waiting for the instruction from the

controller. In summary, the advantages of Openstate compared to Openflow are

described in Table 1.1.

Table 1.1: Comparison between Openflow and Openstate

Protocol Controller

Computational Load

Failure Recovery

Openflow Fast failover: local

reroute based on port

state, switch to detour. In

case no local reroute.

Controller Compute and

Configure new path

Wait for controller to

compute new path.

Controller is involved in

recovery process. Time

range from 100 msec to

360 msec

5

Openstate Computation of backup

path are precomputed

Switch activate the new

path. Time close to 50

msec

To the best of our knowledge, the Openstate has been evaluated only on single

failure scenarios by A Capone & Cascone, (2014). The occurrences of multiple and

simultaneous failures may happen and sometimes cannot be avoided, or beyond

control (Steven et.al. 2014). Thus, in this research, the study would like to evaluate

and analyse the performance of Openstate on Multiple failure scenarios.

 It is expected that the overhead of Openstate controller will increase in

multiple failure scenarios. For example, when n failures occur, the first failure can be

resolved without controller intervention, but in the subsequent failures, the detect

switches will be busy performing lookup to find match for alternative path in the flow

table. In case no local backup path is available, the detect nodes switchover and send

number of packet-in to controller for reactive support. This study plan to evaluate

the performance with the implementation correspond to reactive Openflow network.

Since Openflow 1.1 onward uses fast failover group that perform crankback signalling

for fast failure recovery and this happen to be similar with the approach for multiple

failure in Openstate. For both protocols the study will consider the communication

overhead, packet loss and Round trip time for the flow affected by fault.

6

Figure 1.1 Network topology with multiple failure

For example, in Figure 1, H1 wants to send data packet to host H2, all data

packet is routed through optimal primary path (A BCD) on normal condition.

However, introducing link failure between switch B C and G  D. The fault event

is noticeable by detect switch: B and G. Switch A and switch F are reroute nodes. If

both switch B and switch G have no local back-up paths available in state table, then

both will be busy sending packet-in to controller to seek for reactive support.

Assume that switch B and switch G communicate with the controller at time t1 and

time t2. Thus, the controller will perform the new back-up paths computation two times

at the same time or one at slightly after t1 and another one slightly after t2,. This will

result to more round trip time (RTT) between the detect switch and controller.

However, this study want to analyse the performance of Openstate considering

multiple failures, using the following approach, for the first failure to be resolve

without controller intervention whereas subsequent one can seek for reactive support

of controller using packet-in message to controller to compute backup paths for

both switches. In the case of subsequent packet-in the flow are forwarded without

triggering packet-in. Obviously, there will be some overhead and Round Trip

Time (RTT). The study want to evaluate and analyse the performance of the Openstate

through Overhead Communication from involved switch – controller, Round trip time

7

and finally observed the number of packet loss, the simulation will be performed using

testbed based on mininet.

1.3 Problem Statement

Obviously, it is important to reduce the processing load on the controller. This

would help to speed up the recovery time of SDN upon occurrences of failures. The

more time taken to recover from failures, the more data packets may be losses as it

significantly affects the network performance. Currently Openstate allows SDN to

converge in close to 50 msec time required by network provider as indicated in A

Capone & Cascone, (2014). However, Openstate has been tested on single failure only.

It is important to study whether Openstate will also converge in close to 50 msec in

case of multiple failures. Recovery of multiple failure involve more processing load

on the controller and communication overhead between the controller and involved

switch in SDN network. In this research, the study want to analyses the performance

of Openstate on multiple failures scenarios through communication overhead, RTT

and number of packet loses.

1.4 Goal

The goals of this research is to test multiple failures scenarios in Openstate, to

observes the time taking for Openstate to recover from multiple failures, and also to

study whether Openstate recover faster than Openflow from failures.

8

1.5 Objectives

To solve the research problem, this research considers the following objectives.

1. To design failure scenarios for evaluating recovery process of SDN

2. To implement failure recovery scheme of Openflow and Openstate in mininet

simulator

3. To compare and evaluate the performance of Openstate and Openflow in

SDN with multiple and single failure scenarios.

1.6 Research Scope

To achieve the above listed objectives, the research focuses on the following scope:

 Mininet network simulator will be used as the simulation tool in this research

for simulating network interface with failures

 Type of network; software defined networking

 Software defined networking protocol: Openstate and Openflow

 Analysis was limited to overhead communication switch-controller, number of

packet loss and Round Trip Time for the flow affected by fault.

 The experiment is limited to; Controller (ryu), switch (ofsoftswitch13) and

network topology (Norway).

9

1.7 Significant of the Research

Openstate has been tested on single failure only, multiple failures cannot be

avoided. However, Openstate need to be tested on multiple failures scenarios and

evaluate how long it will take to recover from failures. The results can be used to

decide whether Openstate should be modified to have quicker recovery time.

Therefore, we believe this research work can close one gaps by analyzing the

performance of Openstate considering multiple failures.

1.8 Summary

To summarize the chapter, this research address failure recovery in software

defined networking we present the following: Overview of software define

networking, the background of the research, the protocols used in SDN, the study

presented failure scenario, how the Openstate and Openflow works and differ from

each other, the objective and significant of the research. Finally, the Dissertation

outline of this research work is organized as follows.

Chapter 2 give a general view of SDN architecture. Discusses the adoption

and reconfiguration of SDN standard protocol, i.e. Openflow and Openstate with some

of the related work in failure detection and recovery. Platform resources used in

simulating failure scenarios in (SDN).

Chapter 3 discusses the overview of the research methodology along with the

framework for the study and the overall research plan.

10

Chapter 4 provides a detailed explanation on how the study design and

implement the experiment simulation for failure scenarios using testbed based on

mininet simulator. Based on Openstate considering multiple failure scenarios.

Chapter 5 present the experimental results. The chapter make comparison

between Openflow and Openstate. Finally, discussion of the experimental findings will

be given

Chapter 6 concludes the study and provides a direction for future works.

98

REFERENCES

Adrichem, N. L. M. Van, Asten, B. J. Van, & Kuipers, F. a. (2014). Fast Recovery in

Software-Defined Networks. 2014 Third European Workshop on Software

Defined Networks, 61–66.

Ahuja, S. S., Ramasubramanian, S., & Krunz, M. M. (2009). Single-link failure

detection in all-optical networks using monitoring cycles and paths. IEEE/ACM

Transactions on Networking, 17(4), 1080–1093.

Al-somaidai, M. B., & Yahya, E. B. (2015). Effects of Linux Scheduling Algorithms

on Mininet Network Performance, 3(5), 128–136.

Apostolidis, P. (2016). Network management aspects in SDN, (December

Arshad, N., Heimbigner, D., & Wolf, A. L. (2004). A planning based approach to

failure recovery in distributed systems. WOSS’04: 1st ACM SIGSOFT Workshop

on Self-Managed Systems, 8–12.

Asten, B. van. (2014). Scalability and Resilience of Software-Defined Networking: An

Overview. arXiv Preprint arXiv 1–19. Retrieved from

http://arxiv.org/abs/1408.6760

Atary, A. (n.d.). Efficient Round-Trip Time Monitoring in OpenFlow Networks.

Aweya, J. (2001). IP router architectures: An overview. International Journal of

Communication Systems, 14(5), 447–475.

Azizi, M., Benaini, R., & Mamoun, M. Ben. (2015). Delay Measurement in Openflow-

Enabled MPLS-TP Network, 9(3), 90–101.

Bianchi, G., Bonola, M., & Capone, A. (2014). Towards wire-speed platform-agnostic

control of OpenFlow switches. arXiv Preprint arXiv: …. Retrieved from

http://arxiv.org/abs/1409.0242

Bianchi, G., Bonola, M., Capone, A., & Cascone, C. (2014). OpenState: Programming

Platform-independent Stateful OpenFlow Applications Inside the Switch. ACM

SIGCOMM Computer Communication Review, 44(2), 44–51.

http://arxiv.org/abs/1408.6760

99

Bianchi, G., Capone, A., Bonola, M., Bianchi, G., & Bonola, M. (2014). Public Review

for OpenState : Programming Platform-independent Stateful OpenFlow

Applications Inside the Switch a c m s i g c o m m OpenState : Programming

Platform-independent Stateful OpenFlow Applications Inside the Switch, 44(2),

44–51.

Braun, W., & Menth, M. (2014). Software-Defined Networking Using OpenFlow:

Protocols, Applications and Architectural Design Choices, 302–336.

Capone, A., & Cascone, C. (2014). Detour Planning for Fast and Reliable Failure

Recovery in SDN with OpenState. arXiv Prepr. arXiv {…}.

Capone, A., Cascone, C., Pollini, L., Sanvito, D., & Milano, P. (2015). P4

Implementation of a Stateful Data Plane and its Application to Failure Recovery

Beba, (April 2014), 2015.

Capone, A., & Cascone, C. (2015). Supporting Stateful Forwarding in P4 Stateless

dataplane.

Capone, A., Cascone, C., Nguyen, A. Q. T., Pollini, L., Sans, B., & Sanvito, D. (2015).

Fast and reliable fault recovery in SDN with OpenState.

Cascone, C., Pollini, L., Sanvito, D., & Capone, A. (n.d.). Traffic Management

Applications for Stateful SDN Data Plane.

Chik, J. K., Lindberg, U., & Schutt, C. E. (1996). The structure of an open state of

beta-actin at 2.65 A resolution. Journal of Molecular Biology, 263(4), 607–623.

Conejo, A. J., & Series, A. M. (2002). Mixed-Integer Linear Programming.

Degree, M., Engineering, T., Author, M., Jos, D., Marti, Q., Cervell, C., & Date, P.

(2015). Master thesis

Demo, O. L. (2015). OpenState demo.

Fallis, A. . (2013). No Title No Title. Journal of Chemical Information and Modeling,

53(9), 1689–1699.

Favaro, A., & Ribeiro, E. P. (n.d.). Reducing SDN / OpenFlow Control Plane

Overhead with Blackhole Mechanism.

Ghodsi, A., Shenker, S., Koponen, T., Singla, A., Raghavan, B., & Wilcox, J. (2011).

Intelligent design enables architectural evolution. Proceedings of the 10th ACM

Workshop on Hot Topics in Networks - HotNets ’11, 1–6.

Goransson, P., & Black, C. (2014). Software Defined Networks. Software Defined

Networks, 259–279.

100

Gordon, G. J., Hong, S. A., & Dudík, M. (2009). First-order mixed integer linear

programming. Proceedings of the Twenty-Fifth Conference on Uncertainty in

Artificial Intelligence, 213–222. Retrieved from

http://dl.acm.org/citation.cfm?id=1795114.1795140

Hamad, D. J., Yalda, K. G., & Okumus, I. T. (n.d.). Getting traffic statistics from

network devices in an SDN environment using OpenFlow, 951–956

Heller, B. (2009). OpenFlow Switch Specification. Current, 0, 1–36.

Heller, B. (2009). OpenFlow Switch Specification. Current, 0, 1–36.

Hudyma, R., & Fels, D. I. (n.d.). Categories of Network Failures.

Jammal, M., Singh, T., Shami, A., Asal, R., & Li, Y. (2014). Software defined

networking: State of the art and research challenges. Computer Networks, 72, 74–

98.

Jing-Quan Li, P. B. M. and D. B. (2006). The k -Degree Cayley Graph and its

Topological Properties. Networks, 47(1), 26–36.

Kamamura, S., Masuda, A., & Sasayama, K. (2012). Autonomous Fast Rerouting for

Software Defined Network. NICT International Workshop,APII 2012, 1–22.

Kandula, S., Katabi, D., & Berger, A. (2007). Dynamic Load Balancing Without

Packet Reordering, 37(2), 53–62.

Kannan, K., & Banerjee, S. (2013). Compact TCAM : Flow Entry Compaction in

TCAM for Power Aware SDN, 439–444.

Kaur, K., & Kaur, S. (2016). Performance Analysis Of Python Based OpenFlow

Controllers, 189–192.

Kim, E., Lee, S., Choi, Y., Shin, M., & Kim, H. (n.d.). A Flow Entry Management

Scheme for Reducing Controller Overhead.

Kim, S., & Lumetta, S. S. (n.d.). Evaluation of Protection Reconfiguration for Multiple

Failures in Optical Networks.

Kreutz, D., Ramos, F. M. V, Verissimo, P., Rothenberg, C. E., Azodolmolky, S.,

Member, S., & Uhlig, S. (n.d.). Software-Defined Networking : A

Comprehensive Survey, 1–61.

Kumar, D., & Sood, M. (2014). Software Defined Networking: A Concept and Related

Issues. International Journal of Advanced Networking & Applications, 6(2),

2233–2239. Retrieved from

101

http://search.ebscohost.com/login.aspx?direct=true&db=iih&AN=99879283&la

ng=es&site=ehost-live

Kvalbein, A., Hansen, A. F., Gjessing, S., & Lysne, O. (n.d.). Fast IP Network

Recovery using Multiple Routing Configurations

Lee, S. S. W., Li, K. Y., Chan, K. Y., Lai, G. H., & Chung, Y. C. (2014). Path layout

planning and software based fast failure detection in survivable OpenFlow

networks. DRCN 2014 - Proceedings, 10th International Conference on Design

of Reliable Communication Networks.

Liu, G., Ji, C., & Member, S. (n.d.). Scalability of Network-Failure Resilience, 2, 1–

14.

Malucelli, F. (n.d.). Integer Linear Programming, 1–50.

Martinez, C., Ferro, R., & Ruiz, W. (2015). Next generation networks under the SDN

and OpenFlow protocol architecture.

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J.,

… Turner, J. (2008). OpenFlow: Enabling Innovation in Campus Networks. ACM

SIGCOMM Computer Communication Review, 38(2), 69.

 Meador, B. (2008). A Survey of Computer Network Topology and Analysis Examples

Keywords :, 1–11. Retrieved from http://www.cs.wustl.edu/~jain/cse567-

08/ftp/topology/index.html

Menabo, A. (2015). Evaluating SDN and SDN-based Multicast for Network Intensive

Services in UNINETT.

Molina, E., Jacob, E., Matias, J., Moreira, N., & Astarloa, A. (2015). Availability

Improvement of Layer 2 Seamless Networks Using OpenFlow, 2015(v).

Nacshon, L. (n.d.). Floware : Balanced Flow Monitoring in Software Defined

Networks.

Narisetty, R., Dane, L., Malishevskiy, A., Gurkan, D., Bailey, S., Narayan, S., &

Mysore, S. (2013). OpenFlow configuration protocol: Implementation for the of

management plane. Proceedings - 2013 2nd GENI Research and Educational

Experiment Workshop, GREE 2013, 66–67.

Nokia, V. K. (2016). M . Sc . Thesis : Analysis of OpenFlow Protocol in Local Area

Networks, (August 2013).

Open Networking Foundation. (2013). SDN Architecture Overview. Onf, (1), 1–5.

http://search.ebscohost.com/login.aspx?direct=true&db=iih&AN=99879283&lang=es&site=ehost-live
http://search.ebscohost.com/login.aspx?direct=true&db=iih&AN=99879283&lang=es&site=ehost-live

102

Orlowski, S., & Wessäly, R. (2010). SNDlib 1 . 0 — Survivable Network Design

Library.

Paris, S., & Paschos, G. S. (n.d.). Dynamic Control for Failure Recovery and Flow

Reconfiguration in SDN.

Pontarelli, S., Bonola, M., Bianchi, G., Capone, A., & Cascone, C. (n.d.). Stateful

Openflow : Hardware Proof of Concept

Proposition, V. (2015). Segment Routing : Prepare Your Network for New Business

Models, 1–16.

Romero, G., & Muntaner, D. T. (2012). Evaluation of OpenFlow Controllers.

Sahri, N. M., & Okamura, K. (2014). Openflow Path Fast Failover Fast Convergence

Mechanism, 23–28.

Sessini, P., & Mahanti, A. (n.d.). Observations on Round-Trip Times of TCP

Connections.

Sharma, S., & Staessens, D. (2013). Fast failure recovery for in-band OpenFlow

networks. Design of Reliable …, (1), 52–59. Retrieved from

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6529882

Skinner, J. E., & Moln??r, M. (1999). Event-related dimensional reductions in the

primary auditory cortex of the conscious cat are revealed by new techniques for

enhancing the non-linear dimensional algorithms. International Journal of

Psychophysiology, 34(1), 21–35.

Smith, J., & Taskin, Z. (2008). A Tutorial Guide to Mixed Integer Programming

Models and Solution Techniques. Optimization in Medicine and Biology, 1–23.

Srikanth, K., Kingston, S., & Bhaskar, R. (2011). SDN and Open Flow : A Tutorial.

Survey on Recovery from Failure in Software Define Networking (SDN). (n.d.), 1–8.

Technology, B. F. D., & Paper, W. (n.d.). BFD Technology White Paper, 1–14.

Tilmans, O., Bonaventure, O., Vissicchio, S., & Canini, M. (2014). Robust fault-

recovery in Software-Defined Networks.

Tkachova, O., & Saad, I. (2015). Method for OpenFlow Protocol Verification, 139–

140.

Turull, D., Hidell, M., & Sj, P. (n.d.). Performance evaluation of OpenFlow controllers

for network virtualization.

Wang, S. (n.d.). Comparison of SDN OpenFlow Network Simulator and Emulators :

EstiNet vs . Mininet.

103

Yu, C., Lumezanu, C., Zhang, Y., Singh, V., Jiang, G., & Madhyastha, H. V. (n.d.).

FlowSense : Monitoring Network Utilization with Zero Measurement Cost 1

Introduction.

Zhou, Y., Lakamraju, V., Koren, I., Krishna, C. M., & Member, S. (2007). Software-

Based Failure Detection and Recovery in Programmable Network Interfaces,

18(11), 1539–1550.

