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ABSTRACT 

 

 

 

 

The acidic nature of platinum supported molybdenum oxide (Pt/MoO3) 

catalyst has been found to have effects on cumene hydrocracking. The molybdenum 

oxide (MoO3) sample was prepared by calcination of molybdic acid (H2MoO4) at 

673 K for 3 h. The Pt/MoO3 was prepared by impregnation of MoO3 with an aqueous 

solution of chloroplatinic acid (H2PtCl6) followed by calcination at 673 K in air. The 

catalyst was characterized by x-ray diffraction (XRD), field emission scanning 

electron microscopy-energy dispersive x-ray (FESEM-EDX), fourier transformation 

infra red (FTIR) and electron spin resonance (ESR). The hydrogen influence on 

surface of Pt/MoO3 was studied by in-situ XRD, 2,6-lutidine preadsorbed FTIR, ESR 

spectroscopy and hydrogen uptake capacity. 2,6-lutidine preadsorbed FTIR showed 

that both catalysts possess doublet adsorption bands ascribed to Lewis acid sites, and 

duo-doublet bands ascribed to hydroxyl groups; these indicate an -OH defect 

structure of MoO3 and Mo-OH Brönsted acidic sites. The XRD result confirmed the 

formation of molybdenum oxyhydride (MoOx)
–
(Hy)

+ 
on the hydrogen treated 

Pt/MoO3, whereas the hydrogen adsorption on 2,6-lutidine preadsorbed catalysts 

showed the formation of protonic acid sites over Pt/MoO3. These results strongly 

suggested that the interaction of molecular hydrogen with Pt/MoO3 formed acidic 

Brönsted (MoOx)
–
(Hy)

+ 
via a hydrogen spillover mechanism. In fact, no (MoOx)

–

(Hy)
+ 

and protonic acid sites were observed on Pt-free MoO3. Hydrogen adsorption of 

Pt/MoO3 was studied at the temperature range of 373 - 573 K and at the initial 

hydrogen pressure of 6.7 kPa. The hydrogen uptake exceeded the H/Pt ratio of unity 

for adsorption at and above 423 K, indicating that hydrogen adsorption processes 

involves dissociative adsorption of hydrogen on Pt sites, hydrogen atom spillover 

and surface diffusion of the spiltover hydrogen atom over the bulk surface of MoO3 

followed by formation of (MoOx)
–
(Hy)

+
. The rate controlling step of the hydrogen 

adsorption on Pt/MoO3 was the surface diffusion of the spiltover hydrogen with the 

activation energy of 83.1 kJ/ mol. The presence of hydrogen enhanced the activity of 

Pt/MoO3 in the cumene hydrocracking in which the rate conversion of cumene 

increased by about 30%, while the apparent activation energy decreased by 

approximately 28 kJ/mol. From the Response Surface Methodology (RSM), the 

optimum conditions for cumene hydrocracking for Pt/MoO3 were at treatment 

temperature of 673 K, treatment time of 4 h, reaction temperature of 573 K and flow 

of hydrogen over weight of catalyst (F/W) of 375 ml g
-1

 min
-1

, which the predicted 

value of propylene yield was 16.7% while the experimental value gave 17.1%. 
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ABSTRAK 

 

 

 

 

Sifat berasid platinum disokong pemangkin molibdenum oksida (Pt/MoO3) 

telah didapati mempunyai kesan ke atas penghidropecahan kumena. Sampel 

molibdenum oksida (MoO3) telah dihasilkan oleh pengkalsinan asid molibdik 

(H2MoO4) pada 673 K selama 3 jam. Pt/MoO3 ini telah dihasilkan melalui proses 

pengisitepuan MoO3 dengan asid kloroplatinik (H2PtCl6) diikuti pengkalsinan pada 

suhu 673 K. Pemangkin telah dicirikan dengan pembelauan sinar-x (XRD), 

mikroskop elektron pengimbas pancaran medan – tenaga serakan sinar-x (FESEM-

EDX) , transformasi fourier inframerah (FTIR) dan putaran elektron beresonans 

(ESR). Kesan hidrogen pada permukaan Pt/MoO3 telah dikaji menggunakan XRD, 

penjerapan 2,6-lutidin FTIR, ESR dan kapasiti penyerapan hidrogen. Penjerapan 2,6-

lutidin FTIR menunjukkan bahawa kedua-dua pemangkin mempunyai penjerapan 

berkembar untuk tapak asid Lewis, dan duo-penjerapan berkembar untuk kumpulan 

hidroksil; ini menunjukkan -OH struktur cacat MoO3 dan Mo-OH tapak asid 

Brönsted. Keputusan XRD mengesahkan pembentukan molibdenum oksihidrida 

(MoOx)
–
(Hy)

+ 
pada Pt/MoO3 dirawat hidrogen, manakala penjerapan hidrogen pada 

pemangkin terjerap 2,6-lutidin menunjukkan pembentukan tapak asid protonik pada 

Pt/MoO3. Keputusan ini mencadangkan bahawa interaksi molekul hidrogen dengan 

Pt/MoO3 membentuk asid Brönsted (MoOx)
–
(Hy)

+ 
melalui mekanisma limpahan 

hidrogen. Malah, tidak ada (MoOx)
–
(Hy)

+  
dan tapak asid protonik diperhatikan pada 

MoO3 tanpa Pt. Hidrogen penjerapan Pt/MoO3 dikaji pada julat suhu 373-573 K dan 

pada tekanan hidrogen awal 6.7 kPa. Pengambilan hidrogen melebihi nisbah 

perpaduan H/Pt bagi penjerapan pada dan lebih tinggi daripada 423 K, menunjukkan 

bahawa penjerapan hidrogen melibatkan proses pemisahan hidrogen pada tapak Pt, 

limpahan dan penyebaran atom hidrogen atas sebahagian besar permukaan MoO3 

diikuti dengan pembentukan (MoOx)
–
(Hy)

+
. Langkah mengawal kadar adalah langkah 

penjerapan limpahan hidrogen oleh Pt/MoO3 dengan tenaga pengaktifan 83.1 kJ/mol. 

Kehadiran hidrogen meningkatkan aktiviti Pt/MoO3 dalam penghidropecahan 

kumena di mana meningkat sebanyak 30%, manakala tenaga pengaktifan menurun 

sebanyak 28 kJ/mol. Daripada Kaedah Gerakbalas Permukaan (RSM), keadaan 

optimum untuk penghidropecahan kumena oleh Pt/MoO3 berada pada suhu 673 K, 

masa rawatan 4 jam, suhu tindak balas pada 573 K dan aliran hidrogen per jisim 

pemangkin (F/W) pada 375 ml g
-1

min
 -1

, di mana hasil propilena yang diramalkan 

adalah 16.7%, manakala hasil propilena dalam eksperimen adalah 17.1 %. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 General Introduction 

 

 

In petroleum refining, environmental clean technologies are always been 

sought due to the stringent environmental regulations (Okamoto et al., 2003).  There 

are many industrially important acid catalyzed processes such as alkylation (Feller et 

al., 2004) isomerization (Olah et al., 1985) and cracking (Al-Khattaf and de Lasa, 

2001) processes which are presently unavoidable drawback due to corrosive nature 

and environmental problems.  Solid acid catalyst seems to be preferred alternatives to 

the present liquid acid based technologies and significant efforts have already been 

made to develop solid acid catalyst for this application (Platon and Thomson, 2005).  

 

 

Heterogeneous solid acid catalysts provide a surface for the chemical 

reaction to take place.  In heterogeneous catalysis, the modification of the essential 

surface acid-base properties was explored widely in order to obtain the desired solid 

catalyst by changing factors during preparation such as activation temperature, 

surface composition and additives.  The acidic nature of this solid catalyst has been 

found to have profound effect on catalytic properties.  In the case of cracking or 

isomerization catalysts, the acid strength is crucial.  For oxide supports, the surface 

 



2 

 

acidity can often be an important factor in modifying catalytic performance.  In 

addition, metal oxide-based catalysts are active over a wide range of temperatures 

and show good heat resistant properties. 

 

 

Recently, solid acid catalysts such as Al2O3, zeolite, ZrO2, and MoO3 based 

have been explored widely due to stability and regenerable properties and are highly 

active at a wide range of reaction temperature (Larsen et al., 1996; Barton et al., 

1999; Matsuda et al., 2003).  Bifunctional catalysts consisting of acidic oxide and 

noble metal such as Pt and Pd metal showed high efficiency in the acid catalytic 

reaction such as alkylation, isomerization and cracking.  Acid catalytic reaction is 

normally carried out in the presence of hydrogen due to the role of hydrogen in the 

formation of protonic acid sites and removal of coke deposits on the surface catalysts 

(Ebitani et al., 1991: Ebitani et al., 1992; Guesnet et al., 1997).  For certain classes of 

catalyst, the presence of noble metal is indispensible in the interaction with 

molecular hydrogen which led to the formation of protonic acid sites (Shishido et al., 

1996a; Triwahyono et al., 2003b). 

 

 

MoO3 type catalyst has been extensively focused for acid catalytic reaction. 

Some researchers have proposed that the isomerization reaction occurs on the MoOx 

and MoOxHy phase, since MoO3 became active for alkane isomerization after 

reduction with pure H2.  Blekham et al. (1994) and Pham Huu et al. (1995) reported 

that molybdenum compound containing carbon as an oxycarbide (MoOxCy) act as an 

active phase for alkane isomerization which concluded based on the XRD, XPS and 

HRTEM.  In addition, Pham Huu and co-worker (Pham Huu et al., 1995; York et al., 

1996) showed that oxygen-modified Mo2C and carbon-modified MoO3 were active 

and selective for heptanes isomerization.  Whereas, Katrib et al. (2003) suggested 

that MoO2 phase was responsible for hexane isomerization in which the 

isomerization on MoO2 proceeds via a bifunctional mechanism.  In contrast, Wehrer 

et al. (2003a; 2003b; 2004) pointed out that MoO have been proposed to act as the 

active phase for alkane isomerisation after incomplete reduction with pure H2.  

Matsuda et al. (2002) suggested that the generation of the isomerization activity can 



3 

 

be related to reduction of HxMoO3 to MoOxHy and showed that more acidic MoOxHy 

can be formed from HxMoO3 with the larger hydrogen content.  

 

 

The formation of active MoOxHy for isomerization was also reported over 

SiO2 (Al-Kandari et al., 2009) and TiO2 (Al-Kandari et al., 2008; 2009; 2010; 2013) 

supports.  Based on XPS-UPS, ISS, FTIR and XRD techniques, they reported that 

the H2-reduction of MoO3/TiO2 showed the formation of bifunctional (metal-acid) 

MoO2-x(OH)y phase structure on the surface of TiO2 which promoted high catalytic 

activity towards the isomerization of n-hexane and n-pentane.  

 

 

In addition, the dynamic modifications of the surface acid-base properties by 

interaction between the surface and gas molecule have been observed.  It has 

reported the role of hydrogen in the dynamic modification of active sites by 

molecular hydrogen (Hattori and Shishido, 1997; Triwahyono et al., 2003b) and the 

quantitative analysis of hydrogen adsorption (Satoh et al., 2000; Triwahyono et al., 

2003d; Ruslan et al., 2011) for the SO4
2-

- ZrO2, and WO3-ZrO2 and MoO3–ZrO2 

catalysts, respectively.  The catalysts follow the concept of “Molecular hydrogen-

originated protonic acid sites” in which the hydrogen is dissociatively adsorbed on 

specific active sites to form hydrogen atoms that spill over onto the supports and 

undergo surface diffusion to form protonic acid sites near Lewis acid sites.   

 

 

Although several reports have been published on the MoO3 type catalysts, 

there is lack of reports regarding to the study on the acidic properties, effect of 

hydrogen in the acidity that participate in the formation of active sites from hydrogen 

molecules via spillover phenomenon and the hydrogen uptake capacity, apparent 

activation energy, heat of adsorption and rate controlling step involved in the 

hydrogen adsorption uptake capacity.  The promotive effect of hydrogen in cumene 

hydrocracking activity over Pt/MoO3 also was reported.  
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1.2 Problem Statement and Hypotesis 

 

 

 The catalytic performance of MoO3 is greatly improved in terms of the 

selectivity and catalyst life by loading a Pt metal operating at hydrogen pressure.  

Hydrogen has been played an important role in enhancing the acid catalytic process; 

hydrogen spillover phenomena become crucial in explaining the mechanism of 

various reactions, such as isomerization and cracking via the formation of hydride. 

 

 

Catalytic activities of MoO3 have been studied by several research groups. 

Matsuda et al. reported that reduction of Pt/MoO3 involved the formation of HxMoO3 

which accompanied by increases in the surface area (Matsuda et al., 2003).  

Furthermore, they observed the acidic sites based on NH3-TPD technique.  The result 

showed that reduction of HxMoO3 formed MoOxHy, which was active in the n-

heptane isomerization (Matsuda et al., 2002).  In addition, Al-Kandari and co-

workers (Al-Kandari et al., 2008; 2009; 2010; 2013) reported the formation of active 

MoOxHy over MoO3/TiO2.  They studied that the metallic-acidic property of MoO2-

x(OH)y phase promoted high catalytic in n-hexane alkane isomerization, which 

characterized by XPS-UPS, ISS, FTIR and XRD techniques.  Despite of its catalytic 

activity, the effect of hydrogen in the acidic properties of MoO3 type catalysts, and 

the hydrogen uptake and kinetics of hydrogen adsorption has not been classified yet. 

 

 

Therefore, it is desirable to study the acidity properties of MoO3 type catalyst 

and its catalytic activity in response to the interaction of molecular hydrogen with the 

surface catalyst.  It is expected that the interaction of molecular hydrogen with 

catalyst may develop active sites for the acid catalyzed reaction.  Cumene catalytic 

cracking was chosen as model reaction as cumene cracking is known to be probe 

reaction on Brönsted acid site (Shishido and hattori, 1996b).  In this study, XRD, 

ESR, IR spectroscopy and acid-catalytic cumene hydrocracking will be tested on 

MoO3 and Pt/MoO3 catalysts in order to determine properties-activity relationship.  

Moreover, the optimum conditions of acid-catalytic cumene hydrocracking over 

Pt/MoO3 will be determined by Response Surface Methodology (RSM). 
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1.3 Objective of Research 

 

 

The detailed scopes of this research are as follows: 

 

 

1. To prepare and characterize the MoO3 and Pt/MoO3. 

2. To study the effect of molecular hydrogen on MoO3 and Pt/MoO3 related 

to; 

a) The acidic properties of the catalyst. 

b) Hydrogen uptake over the catalysts. 

c) Catalytic activity of cumene hydrocracking. 

3. To identify the optimum condition of catalytic activity of Pt/MoO3 

catalyst on acid-catalytic cumene hydrocracking by Response Surface 

Methodology (RSM).  

 

 

 

 

1.4 Scope of Research 

 

 

In order to complete the objectives of this study, firstly, the molybdenum 

oxide (MoO3) was obtained by calcination of molybdic acid, H2MoO4 at 673 K for 3 

hours. the Pt loaded molybdenum oxide (Pt/MoO3) was prepared by impregnation of 

MoO3 powder with an aqueous solution of chloroplatinic acid, H2PtCl6 followed by 

calcination at 673 K in air, with the content of Pt was 0.5 wt%. 

 

 

Secondly, MoO3 and Pt/MoO3 were characterized using X-ray diffraction 

analysis (XRD), nitrogen adsorption (BET), Thermogravimetry analysis (TGA), 

Field Emission Scanning Electron Microscopy-Energy Dispersive X-Ray (FESEM-

EDX), IR/Raman spectroscopy, Electron Spin Resonance (ESR) spectroscopy and 

2,6-lutidine adsorption IR in order to determine the properties of the catalyst.  
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The interaction of hydrogen with the catalysts was assessed based on in-situ 

XRD, in-situ ESR measurement and 2,6-lutidine preadsorbed IR spectroscopy to 

confirm the formation and role of the acidic Brönsted (MoOx)
-
(Hy)

+
 phase on the 

surface of MoO3 and MoO3 catalysts. This study also intended to study the hydrogen 

adsorption on Pt/MoO3 and to evaluate the interaction of hydrogen with the surface 

of Pt/MoO3 in relation to the quantitative measurement hydrogen uptake, apparent 

activation energy, heat of adsorption and rate controlling step involved in the 

hydrogen adsorption on Pt/MoO3.  

 

 

Finally, the optimum conditions for acid-catalytic cumene cracking over 

Pt/MoO3 was identified by Response Surface Methology (RSM) using Statsoft 

Statistica 8.0 software with face-centered central composite design (FCCD) method.  

The independent variables used in this study were treatment time (t), treatment 

temperature (K), reaction temperature (K) and flow of hydrogen over weight of 

catalyst (F/W).  The reaction was carried out in a microcatalytic pulse reactor 

equipped with an online sampling valve for gas chromatography analysis.  

 

 

 

 

1.5 Significance of Study 

 

 

This study was conducted to prepare MoO3 and Pt/MoO3 and to characterize 

with XRD, BET surface area analyser, TGA spectrometer, FESEM-EDX, IR/Raman 

and ESR spectrometer, in order to understand the properties of the catalyst.  A 

detailed investigation on the role of hydrogen in the formation of acidic Brönsted 

(MoOx)
-
(Hy)

+
, quantitative measurement hydrogen uptake on the catalyst and acid-

catalytic cumene hydrocracking.  The optimization condition of acid-catalytic 

cumene hydrocracking over Pt/MoO3 is conducted.  
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The understanding of the properties-activity relationship of MoO3 and 

Pt/MoO3 catalysts became a new finding and consequently beneficial in knowledge 

transfer in the solid acid catalyst types for acid-catalyzed reaction such as cumene 

hydrocracking and n-alkane isomerization. 

 

 

 

 

1.6  Thesis Outline 

 

 

This thesis begins with Chapter 1 describes the research background which is 

about the important of solid acid catalyst in acid catalyzed reaction in petroleum 

refining field.  Problem statement of the current research was stated to give the clear 

objectives of the present study, and the scope of study covers the research work done 

to meet these objectives.  Chapter 2 reviews the details that have been previously 

studied related to the acid properties of MoO3 type catalyst and the effect of 

hydrogen molecule on the acidity and acid catalytic reaction.  Chapter 3 describes the 

experimental, characterization and catalytic testing of catalyst.  Chapter 4 concerns 

with data processing and discussing of characterizations related to acidity, kinetic 

study and catalytic activities of the catalysts.  Finally, the general conclusions and 

recommendation for future studies were stated in Chapter 5. 
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