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ABSTRACT 

 

 

 

 

Cellulose is the main component of plant cell wall and the most abundant 

biopolymer on the earth. The complexity of cellulose structure and multiple binding 

modes of cellulose restrict the ease of understanding the mode of action of 

cellulolytic enzymes. Hence, in this study, soluble cellooligosaccharides were used 

as substrates.  In nature, microorganisms are capable of degrading cellulose by 

secreting a set of enzymes called cellulases.  Most studies have been conducted on 

the cellulolytic system that is secreted by the soft-rot fungus, Trichoderma reesei 

(Tr).  This study aims to analyse the hydrolysis pattern of cellooligosaccharides 

(including cellotriose, cellotetraose, cellopentaose and cellohexaose) when 

hydrolysed by Tr cellobiohydrolase 7A (TrCel7A) and evaluate the reaction kinetics 

such as bond cleavage frequencies and bond cleavage probabilities.  This work 

involves purification of enzyme TrCel7A from enzyme mixture (Celluclast®), 

analysis of purified enzyme TrCel7A, preparation of substrate (i.e. 

cellooligosaccharides), hydrolysis of the cellooligosaccharides with degree of 

polymerisation (DP) from 3 to 6 by TrCel7A at 25 °C for 1 hour, and high-

performance liquid chromatography analysis of the product concentration.  Based on 

kinetic modelling of cellooligosaccharides, the frequencies of hydrolysis of the 

glycosidic bond in the enzyme-substrate complex and the probabilities that 

hydrolysis of glycosidic bond took place specifically in the enzyme-substrate 

complex were calculated. Based on the quantitative data on the bond cleavage 

frequencies of cellooligosaccharides with DP 4 to 6 showed that the bond cleaved 

more frequent at glucose linkage (cellopentaose = 0.102 ± 0.021 s
-1

, cellohexaose = 

0.109 ± 0.011 s
-1

) followed by at cellobiose linkage (cellopentaose = 0.085 ± 0.003 s
-

1
, cellohexaose = 0.053 ± 0.002 s

-1
) and cellotriose linkage (cellohexaose = 0.040 ± 

0.004 s
-1

).  A similar trend was observed for the result of bond cleavage probabilities 

for most substrates that shows the glucose linkage (cellopentaose = 0.542 ± 0.050 s
-1

, 

cellohexaose = 0.540 ± 0.036 s
-1

) of the substrate chain has the highest probabilities 

than cellobiose linkage (cellopentaose = 0.458 ± 0.050 s
-1

, cellohexaose = 0.263 ± 

0.021 s
-1

) and cellotriose linkage (cellohexaose = 0.197 ± 0.022 s
-1

). Therefore, this 

research suggested that TrCel7A catalysed degradation of cellooligosaccharides from 

the reducing end of the chain.  Also, it specified that the position of whole 

cellooligosaccharides chain is in the active site for the TrCel7A. 
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ABSTRAK 

 

 

 

 

Selulosa adalah komponen utama pada dinding sel tumbuhan dan biopolimer 

paling banyak di bumi. Struktur selulosa yang rumit dan pelbagai jenis ikatan 

selulosa mengehadkan kefahaman tentang tindakan enzim selulolitik.  Oleh itu, 

dalam kajian ini, cellooligosaccharides telah digunakan sebagai substrat.  Secara 

semula jadi, mikroorganisma mampu mengurai selulosa dengan merembeskan satu 

set enzim yang dikenali sebagai cellulase.  Kebanyakan kajian telah dijalankan ke 

atas sistem selulolitik yang dirembeskan oleh kulat yang mereput secara lembut,  

Trichoderma reesei (Tr). Kajian ini bertujuan menganalisa hidrolisis 

cellooligosaccharides (termasuk cellotriose, cellotetraose, cellopentaose dan 

cellohexaose)  apabila dihidrolisis oleh Tr cellobiohydrolase 7A (TrCel7A) dan 

menilai tindak balas kinetik seperti kekerapan belahan ikatan dan kebarangkalian 

belahan ikatan.  Kerja-kerja ini melibatkan penulenan enzim TrCel7A daripada 

campuran enzim (Celluclast®), analisis enzim TrCel7A yang telah ditulenkan, 

penyediaan substrat (iaitu cellooligosaccharides), hidrolisis cellooligosaccharides 

dengan darjah pempolimeran (DP) dari 3 hingga 6 oleh TrCel7A pada 25 °C selama 

1 jam, dan analisis kromatografi cecair berprestasi tinggi untuk kepekatan produk.  

Berdasarkan model kinetik, kekerapan hidrolisis ikatan glikosidik pada kompleks 

enzim-substrat dan kebarangkalian hidrolisis ikatan glikosidik yang berlaku 

khususnya dalam kompleks enzim-substrat telah dikirakan.  Berdasarkan data 

kuantitatif terhadap kekerapan belahan ikatan cellooligosaccharides dengan DP 4 

hingga 6 menunjukkan bahawa ikatan terbelah lebih kerap di rantaian glukosa 

(cellopentaose = 0.102 ± 0.021 s
-1

, cellohexaose = 0.109 ± 0.011 s
-1

) diikuti oleh 

rantaian cellobiose (cellopentaose = 0.085 ± 0.003 s
-1

,  cellohexaose = 0.053 ± 0.002 

s
-1

 dan rantaian cellotriose (cellohexaose = 0.040 ± 0.004 s
-1

).  Kecenderungan yang 

sama dapat dilihat bagi keputusan kebarangkalian ikatan hidrolisis untuk kebanyakan 

substrat yang menunjukkan bahawa rantaian glukosa (cellopentaose = 0.542 ± 0.050 

s
-1

, cellohexaose = 0.540 ± 0.036 s
-1

) pada substrat mendapat kebarangkalian 

tertinggi berbanding rantaian cellobiose (cellopentaose = 0.458 ± 0.050 s
-1

, 

cellohexaose = 0.263 ± 0.021 s
-1

) dan rantaian cellotriose (cellohexaose = 0.197 ± 

0.022 s
-1

). Oleh itu, kajian ini mencadangkan bahawa TrCel7A memangkinkan 

degradasi cellooligosaccharides dari hujung rantai yang menurun. Juga, dinyatakan 

bahawa kedudukan seluruh rantai cellooligosaccharides berada pada tapak aktif 

TrCel7A. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Study 

 

 

Recently, there has been a growing interest in carbohydrate degraded by 

lignocellulosic biomass.  It is because they play a vital role in diverse fields, namely, 

chemical, renewable and ecological-based product, and global energy.  According to 

Perlack et al. (2005), conversion of biomass to transportation fuels may perhaps 

counterweight about 30% of the existing petroleum used in the United States. 

Currently, biomass from renewable sources is the most abundant source of energy in 

the United States and European Union.  Lignocellulosic biomass consists of three 

different parts; cellulose, hemicellulose, and lignin.  

 

 

Cellulose is the major component of plant cell walls and the most abundant 

polysaccharides when compared to hemicellulose and lignin, with nearly 20 to 50 % 

based on its dry weight (Pauly and keegstra, 2008).  Cellulose, the most recalcitrant 

carbohydrate substrate, is also produced by some animals and microorganisms 

including bacteria and algae.  Cellulose has a great potential as a renewable energy 

source and it can be applied in various industries such as paper and pulp, 

construction materials for the polymer, and natural textile fibers.  Moreover, 

hydrolysis of cellulose to soluble sugars can be a starting material for the production 

of food, fuel and industrial chemicals (Chheda et al., 2007).  Apart from that, 

cellulose is insoluble in water and heterogeneous due to the complex structure of 

cellulose, which contains both crystalline and amorphous regions. The heterogeneous 

of cellulose structure directed to a rapid fall in hydrolysis rate as the reaction 

continues (Väljamäe et al., 1999).  Hence, the breakdown of cellulose chain is 
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slightly difficult.  This matter can be solved by using soluble cellulose-based 

substrate such as a soluble cellooligosaccharides.  Cellooligosaccharides are linear 

oligomers of glucopyranose moieties linked by β-1, 4-glycosidic bonding. In fact, 

cellooligosaccharides are a shorter form of cellulose, thus they have a matching 

chemical structure as cellulose.  Cellooligosaccharides with up to a degree of 

polymerisation (DP) 8 are soluble in water and produced by the controlled hydrolysis 

of cellulose followed by fractionation and purification of cellooligosaccharides into 

different chain lengths (DP) (Akpinar et al,. 2004).  

 

 

Industrially, cellulose can be degraded into soluble sugar chain via enzymatic 

or acid hydrolysis.  Researchers have proven that the enzymatic hydrolysis is 

preferable, and efficient than acid hydrolysis in degrading the complex chain of 

cellulosic biomass (Harmsen et al., 2010).  It is due to the fact that the enzymatic 

hydrolysis is performing under a mild condition of reaction such as temperature and 

pressure, environmental-friendly and produce highly selective of fermentable sugars 

(Karmakar and Ray, 2011).  Several steps are involved in the enzymatic hydrolysis 

of cellulose such as adsorption of cellulase on cellulose surface, the breakdown of 

cellulose to soluble sugars and desorption of resulting sugars from the cellulose. 

 

 

The efficient hydrolysis of cellulose requires a synergistic action of multiple 

enzymes in cellulase.  There are three different enzymes in cells, namely, 

exoglucanase or known as cellobiohydrolase (CBH), endo-glucanase (EG), and beta-

glucosidase (BG).  CBH is an exo-processive enzyme that begins hydrolysing from 

the cellulose chain end, whereas EG is an endo-processive enzyme that randomly 

cleaves the cellulose chain.  Whilst, BG hydrolyses cellobiose to glucose, thus reduce 

the product inhibition of CBH (Rosgaard et al., 2007).  Cellulases are primarily 

produced by microorganisms, for instance, bacteria and fungi.  Soft-rot and white-rot 

fungi, for example, Humicola, Trichoderma, Schizophyllum, Penicillium and 

Fusarium secrete efficient cellulase systems for hydrolysis of cellulose.  To date, the 

best characterised cellulolytic system is from soft rot fungus Trichoderma reesei (T. 

reesei) (Martinez et al., 2008).  The main component of T. reesei cellulolytic system 

is glycoside hydrolase (GH) family 7 cellobiohydrolase, TrCel7A (previously known 

as CBH I).  Several studies were conducted on hydrolysis of soluble 
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cellooligosaccharides by TrCel7A.  A study by Nidetzky et al. (1994) showed that 

the initial velocity of cellooligosaccharides degraded by TrCel7A increased with DP 

up to 6 (cellohexaose) and then remained constant. 

 

  

 Therefore, this study aims to analyse the hydrolysis pattern of soluble 

cellooligosaccharides such as cellotriose (DP 3), cellotetraose (DP 4), cellopentaose 

(DP 5), and cellohexaose (DP 6) catalysed by TrCel7A.  Furthermore, the kinetics of 

enzymatic hydrolysis was studied to understand the mechanisms of TrCel7A in 

hydrolysing cellooligosaccharides.  Kinetics equation was derived based on 

Michaelis-Menten equation in order to quantify the kinetics parameter such as the 

bond cleavage frequency (observed rate constant) and the probability of bond 

cleavage that occurs specifically inside the enzyme-substrate complex. 

 

 

 

 

1.2 Problem Statement  

 

 

 Initially, the cellobiohydrolase (CBH) in cellulase is understood to release 

cellobiose residues processively from the non-reducing end of the cellulose chain. 

However, recent studies shown that cellulose is attacked by CBH from the reducing 

and the non-reducing end of the cellulose chain (Puls and Stork, 1995).  As a 

consequence, the ease of understanding the mode of action of cellulolytic enzymes is 

restricted (Jalak and Väljamäe, 2014).   

 

 

Apart from that, less kinetic studies was performed on hydrolysis of soluble 

cellooligosaccharides using individual enzymes isolated from mixture of enzyme, 

Celluclast® (for example, TrCel7A in the absence of any synergistic enzymes) 

( rs ansk  and Biely, 1992; Nidetzky et al., 1994).  Soluble cellulose-based 

substrates are important for efficient conversion of cellulose to soluble sugars.  It is 

because the structural limitation of the cellulose such as instant surface area, 

crystallinity, and the presence of hemicellulose and lignin content might delay the 

hydrolysis of cellulose (Pan et al., 2006).  In view of this, this study focuses on 
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hydrolysis of soluble cellooligosaccharides (DP 1 to DP 6) by TrCel7A to study the 

hydrolysis pattern and the kinetics of this enzyme. 

 

 

 

 

1.3  Significant of the Study 

 

 

This study will be a significant endeavour in production of cello-

oligosaccharides, glucose and other soluble sugars from cellulosic wastes.  Thus, the 

cost for producing fuels and chemicals can be reduced.  Moreover, this research will 

provide a database regarding hydrolysis pattern and kinetics equations of TrCel7A 

that can be further developed in the future research to increase the understanding on 

the mechanism of the enzyme-substrate reaction.  Furthermore, this study will serve 

as a future reference to produce non-digestible oligosaccharides (NDO) in food 

industries since cellooligosaccharides are neither absorbed in the human 

gastrointestinal tract nor hydrolysed by human enzymes.  In addition, they possess 

important physicochemical and physiological properties.  Thus they are potential to 

increase the health of consumers due to several advantages, for example reduce 

diabetes and obesity, treat cancer and inflammatory disease, and increase the 

adsorption of mineral in our body (Mussatto et al., 2007).  

 

 

 

 

1.4 Research Objectives 

 

 

(i) To analyse the hydrolysis pattern of different DP of soluble 

cellooligosaccharides  (cellotriose, cellotetraose, cellopentaose, and 

cellohexaose) catalysed by TrCel7A.  

(ii) To evaluate the kinetics parameter such as the bond cleavage frequency and 

the probability for hydrolysis of cellooligosaccharides bond. 
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1.5 Scopes of Study 

 

 

Several scopes were covered to fulfil the objectives of this study which 

covers: 

 

 

(i) Preparative works that include the purification of TrCel7A and preparation 

and purification of cellooligosaccharides which is limited to DP 1 to 6. 

TrCel7A was purified from the commercially available crude cellulase 

preparation, Celluclast® using ion-exchange chromatography.  Ion-exchange 

chromatography was performed using the ÄKTA Explorer chromatography 

system at 4 ºC using 0.5 M ammonium acetate buffer pH 5.0 as an eluent. 

Besides, several analyses of purified enzyme TrCel7A that was obtained in 

this study was performed which includes pNPL hydrolysis, BC hydrolysis, 

measurement of soluble sugar concentration by the anthrone-sulfuric acid 

method and gel electrophoresis.  Apart from that, cellooligosaccharides was 

purified using cellulose diacetate as starting material.  Preparation of 

cellooligosaccharides includes partial deacetylation and depolymerisation of 

cellulose diacetate, limited hydrolysis of partially acetylated cellulose with 

Celluclast® and total deacetylation followed by separation of hydrolysis 

products using size-exclusion chromatography (SEC).  The DP of soluble 

cellooligosaccharides that involves in hydrolysis is limited to DP 3 to 6. 

 

 

(ii) Measurement of enzyme kinetics involves hydrolysis of soluble 

cellooligosaccharides which are limited to DP 3 to 6.  The concentration for 

each DP of cellooligosaccharides attempts to cover three different 

concentrations: 200 µM, 300 µM, and 400 µM.  Hydrolysis were performed 

was followed by measuring the increase in the number of reducing groups via 

a modified BCA method from the separation of products by HPLC.  This part 

of the research also includes the derivation of appropriate kinetic equations 

based on Michaelis-Menten equation to obtain kinetics parameters such as the 

bond cleavage frequency and the probability for bond cleavage for 

cellooligosaccharides with DP 3 to 6. 
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