
 

 

 

 

 

OPTIMAL TUNING OF PROPORTIONAL INTEGRAL DERIVATIVE 

CONTROLLER FOR SIMPLIFIED HEATING VENTILATION AND AIR 

CONDITIONING SYSTEM 

 

 

 

 

 

 

 

 

SEYED MOHAMMAD ATTARAN 

 

 

 

 

 

 

 

 

A thesis submitted in fulfilment of the  

requirements for the award of the degree of  

Doctor of Philosophy (Electrical Engineering)  

 

 

 

 

 

 

Faculty of Electrical Engineering 

Universiti Teknologi Malaysia 

 

 

 

 

 

 

JANUARY 2016 

 

 

 



iii 

 

 

 

 

 

 

 

 

 

 

 

 
Special thanks to my beloved Mother, Father, 

 Sister, Brother and especially 
my lovely wife 

 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

 

 

 

 

 

ACKNOWLEDGEMENTS 

 

 

 

 

First and foremost, I praise God the almighty for providing me this 

opportunity and granting me the capability to proceed successfully.  This thesis 

appears in its current form due to the assistance and guidance of several people.  I 

would like to forever acknowledge my supervisor, Prof. Dr. Rubiyah Yusof, for her 

kind encouragement, guidance and inspiration throughout this research.  Very special 

thanks goes out to my co-supervisor, Assoc. Prof. Dr. Hazlina Selamat, without 

whose guidance, motivation, suggestions and encouragement, I would not have 

considered a graduate career in research. 

 

 

My appreciation also goes to my family who have been so tolerant and 

supportive all these years.  Thanks for their encouragement, love and emotional 

support that they have given to me.  And finally, my sincere and heartfelt 

appreciation for my lovely wife, brother and colleagues, those who were involved 

directly or indirectly with this project, thank you for your valuable discussions and 

suggestions.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 

 

 

 

 

 

ABSTRACT 

 

 

 

 

A Heating Ventilation and Air Conditioning system (HVAC) is an equipment that is 

designed to adapt and adjust the humidity as well as temperature in various places. 

To control the temperature and humidity of the HVAC system, various tuning 

methods such as Ziegler–Nichols (Z-N), Chien-Hrones-Reswick (CHR), trial and 

error, robust response time, particle swarm optimization (PSO) and radial basis 

function neural network (RBF-NN) were used.  PID is the most commonly used 

controller due to its competitive pricing and ease of tuning and operation.  However, 

to effectively control the HVAC system using the PID controller, the PID control 

parameters must be optimized.  In this work, the epsilon constraint via radial basis 

function neural network method is proposed to optimize the PID controller 

parameters.  The advantages of using this method include fast and accurate response 

and follow the target values compared to other tuning methods.  This work also 

involves the estimation of the dynamic model of the HVAC system.  The non-linear 

decoupling method is used to modify the model of HVAC system.  The benefits of 

using the proposed simplification technique rather than other techniques such as the 

relative gain array techniques (RGA) is because of its simplification, accuracy, and 

reduced non-linear components and interconnection effect of the HVAC system.  It is 

observed that the amount of integral absolute error (IAE) for temperature and 

humidity based on the simplified model are decreased by 18% and 20% respectively.  

Moreover, it is revealed that optimization of PID controller through multi objective 

epsilon constraint method via RBF NN of the simplified HVAC system based on 

non-linear decoupling method shows better transient response and reaches better 

dynamic performance with high precision than other PID control tuning techniques.  

The proposed optimum PID controller and estimation of dynamical model of the 

HVAC system are compared with the different tuning techniques such as RBF and Z-

N based on original system.  It is observed that the energy cost function due to 

temperature (JT) and humidity (JRH) are lowered by 15.7% and 4.8% respectively; 

whereas the energy cost functions reflect the energy consumptions of temperature 

and humidity which are produced by the humidifier and heating coil.  Therefore, 

based on the new optimization method the energy efficiency of the system is 

increased.  The unique combination of epsilon constraint method and RBF NN has 

shown that this optimization method is promising method for the tuning of PID 

controller for non-linear systems. 
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ABSTRAK 

 

 

 

 

Sistem Pemanasan, Pengalihudaraan dan Penyaman Udara atau dikenali sebagai 

(HVAC) adalah satu sistem yang telah direka untuk mengekalkan dan melaraskan 

kelembapan dan juga suhu di beberapa kawasan. Untuk mengawal kadar kelembapan 

dan juga suhu dengan menggunakan sistem HVAC terdapat beberapa kaedah yang 

telah diperkenalkan antaranya Ziegler-Nichols (Z-N), Chien-Hrones-Reswick (CHR), 

kaedah cubaan, masa tindak balas teguh, kaedah pengoptimuman ia ini dikenali 

sebagai pengoptimuman kerumunan zarah (PSO) dan juga kaedah rangkaian neural 

(RBF-NN). Berkadaran kamiran terbitan (PID) adalah salah satu jenis alat kawalan 

yang sering digunakan kerana mempunyai kelebihan dari segi persaingan harga 

pasaran dan juga kemudahan melaraskan dan pengoperasian alat kawalan. Walau 

bagaimanapun, untuk mengawal sistem HVAC secara efektif dengan menggunakan 

alat kawalan jenis PID, pemboleh ubah untuk mengawal PID ini perlu 

dioptimumkan. Di dalam hasil kerja ini, pemalar epsilon dengan menggunakan 

kaedah rangkaian neural (RBF-NN) telah digunakan bagi mendapatkan nilai 

pemboleh ubah yang optimum bagi alat kawalan jenis PID. Kelebihan menggunakan 

kaedah ini ialah ia mempunyai kadar tindak balas yang cepat dan tepat dengan nilai 

yang ingin dicapai berbanding dengan kaedah yang lain. Hasil kajian ini juga 

melibatkan penganggaran model dinamik bagi sistem HVAC. Kaedah pengasingan 

secara tidak linear digunakan bagi mengubah model sistem HVAC. Kelebihan 

dengan menggunakan kaedah tatasusunan gandaan relatif (RGA) yang dicadangkan 

mempunyai ciri-ciri yang mudah, tepat dan juga meminimumkan kesan nilai yang 

tidak linear dan sistem penghubung di dalam model HVAC. Berdasarkan 

pemerhatian, nilai yang dihasilkan bagi ralat kamiran mutlak (IAE) suhu dan 

kelembapan bagi model yang telah dicadangkan menurun kepada 18% dan 20%. 

Selain daripada itu, dengan mengoptimumkan alat kawalan jenis PID menggunakan 

kaedah RBF-NN sistem HVAC pengasingan secara tidak linear menunjukkan hasil 

tindak balas seimbang yang lebih baik dan mencapai prestasi dinamik dengan kadar 

ketepatan yang lebih baik daripada kaedah lain. Kaedah yang dicadangkan telah 

dibandingkan hasil keputusannya dengan kaedah penalaan yang lain. Hasil dari 

keputusan menunjukkan kos fungsi yang dihasilkan bagi suhu (JT) dan kelembapan 

(JRH) adalah lebih rendah sebanyak 15.7% dan 4.8%; manakala fungsi kos tenaga 

mencerminkan penggunaan tenaga disebabkan suhu dan kelembapan yang dihasilkan 

oleh pelembap dan pemanasan gegelung. Oleh itu, berdasarkan kaedah 

pengoptimuman baru kecekapan tenaga sistem ini meningkat. Gabungan unik 

kekangan epsilon dan RBF NN telah menunjukkan bahawa kaedah pengoptimuman 

ini adalah kaedah yang berpotensi untuk penalaan pengawal PID sistem tidak linear. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1       Heating Ventilation and Air conditioner (HVAC) 

    

   

At present, heating ventilation and air conditioners (HVAC) are common in 

our lives, especially in the tropical and subtropical regions of the world.  HVAC is 

equipment that is designed to adapt and adjust the humidity as well as temperature in 

various places.  One of the functions of HVAC is to capture heat and channel it 

outside.  However, changing the temperature is not the only function of an air 

conditioner; the other feature is to function as a dehumidifier.  Thus, HVAC can 

make people feel comfortable (Olesen and Brager, 2004).  Two main objectives in 

the control of HVAC systems are control of both humidity and temperature 

(Arguello-Serrano and Velez-Reyes, 1999).   

 

 

Moreover, HVAC mechanisms are also used for setting some environmental 

variables including temperature, moisture, and pressure (Khooban et al., 2014).  

Achieving these purposes requires a suitable control system design.  A survey by 

Kelman et al. (2012) reported that HVAC operations account for approximately 40% 

of the domestic energy consumption in the USA.  Therefore, it is necessary to design 

HVAC control system that will deliver a high comfort level and more energy 

efficient.  So far, various types of control systems have been proposed since the 

advent of HVAC systems (Wemhoff and Frank, 2010). 
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1.1.1     Concepts & Definitions   

 

 

Air conditioning can be used to control certain environmental conditions 

including air temperature, air motion, moisture level and radiant heat energy level.  

Air conditioning involves the cooling of indoor air for thermal comfort, treatment of 

air for temperature, cleanliness and humidity, and efficient distribution of air to meet 

the requirements of a particular space.  The fundamental targets of any HVAC 

systems are to provide and set interior thermal conditions that the number of 

residents will find suitable and sufficient.  Sometimes this may need and require that 

air be changed at an ordinary speed to raise evaporation and transferring heat from 

the skin.  It is mentioned that for providing occupant comfort well it needs to add or 

remove heat to or from spaces of building.  Moreover, it is often a requirement that 

humidity be removed from spaces during the summer and humidity added during the 

winter.  The foundation key system components which are provided the control 

functions of HVAC systems are heat and humidity.  Before proceeding further, to 

define the character of HVAC system it is needed to describe many concepts and 

terms.  Each building has balance point temperature, known as exterior temperature 

which is be able to encourage thermal comfort. 

 

 

Losses and building heat gains are in equilibrium at the balance temperature. 

As a result, relevant interior temperature will be preserved naturally and without 

additionally involvement.  When the air temperature of outside go downs below or 

exceeds, the heating system and cooling system are used, to drop or removes such 

excess heat, respectively to the balance point temperature (Grondzik and Furst, 

2000). 

 

 

 Design of a sufficient controller depends on a good dynamic model of the 

system.  An appropriate system model requires the selection of a suitable controller.  

The most important of this part is that modeling the components of the HVAC 

system makes easier to control the system.  The model which is developed can be 

used for comparison validation, which is most important for in the design of a 

multivariable controller using control theory.   
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1.1.2     Components 

 

 

      Figure 1.1 shows the typical components in a HVAC system.  The main 

HVAC system components are : boilers, cooling equipment, pump and controls 

(Trust, 2011). 

 

 

i) Boilers (‘a’) create hot water to deliver to the working space.  This is 

done either by heating coils (‘b’) or through hot water pipes to 

radiators (‘c’). 

 

 

ii) Cooling tools (‘d’) cools water for pumping to cooling coils (‘e’).  

Proceed air is then explode blown over the chilled water coils into the 

space to be cooled (‘f’) through the ventilation system.  As part of the 

refrigeration cycle in the chiller, heat must also be rejected from the 

system via a cooling tower or condenser (‘g’). 

 

 

iii) Pumps are used throughout the system to circulate the chilled and hot 

water to the required areas throughout the building 

 

 

iv) Controls are used to make components work together efficiently.  

They turn tools on or off and tune boilers and chillers, air and water 

flow rates, temperature and pressure.  A controller incorporating one 

or more temperature (‘i’) sensors inside the workspace sends a signal 

to the heating or cooling coils to activate. 
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Figure 1.1: Schematic diagram of typical HVAC system (Trust, 2011) 

 

 

 

 

1.1.3     Categorize of HVAC Systems 

 

 

There are different methods for categorizing the HVAC system; one category 

of HVAC system is known as the standard or commercial system and another 

category is the central or local system (Anderson et al., 2007).  The discussion to 

follow will focus on different types of classified HVAC systems. 

 

 

 

 

1.1.3.1   Standard HVAC System 

 

 

In a standard HVAC system, shared water heaters (or water chillers) supply 

hot (or cold) water to multiple discharge air system (DAS) air handling units.  In 

such systems, the supply water temperature is not locally controlled. 
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To each DAS controller, the water supply temperature must be regarded as 

constant, with any deviation a disturbance.  This leaves the water flow rate and input 

air temperature as the only free parameters that can be locally varied (independent of 

the air flow rate) to achieve the desired discharge air temperature.  Thus, the overall 

controller for the DASs typically consists of multiple, SISO control loops.  For each 

loop controller, only one system parameter is regulated (Anderson et al., 2007).   

 

 

 

 

1.1.3.2   Commercial Systems 

 

 

In a commercial HVAC system, a central air supply (CAS) typically provides 

air at a controlled temperature and flow rate for use in heating (or cooling) a space.  

A heating (or cooling) coil within the discharge air system (DAS) is used for heating 

(or cooling) the discharged air.  The temperature of the discharged air is controlled by 

regulating the rate at which hot (or chilled) water flows through its heating (or 

cooling) coil(s).  The flow rate of the discharged air is regulated to maintain a 

predetermined static air pressure within the temperature controlled space.  The heat 

flow rate from a heating coil is a function of the flow rates of both the hot water and 

air, as well as the temperatures of the air and water flowing through the coil.  In such 

a DAS, it is common to employ four separate single input single output (SISO) 

controllers to independently control these four parameters. 

 

 

In a DAS, the temperature of the air leaving the mixing box, and 

subsequently going into the coil, is determined by the temperatures of the external 

and return air and the ratio at which they are mixed.  Typically, the external and 

return air dampers are controlled in a coordinated manner so that the airflow rate is 

unaffected while the external-to-return air mix is varied to achieve a predetermined 

input air temperature (within the range limited by the return and external air 

temperatures).  In general, the temperature of the water supplied to the heating coil is 

maintained at a constant temperature.  The flow rate of the hot water through the coil 

is the primary parameter manipulated to control the heat flow rate and hence the 

discharge air temperature (Anderson et al., 2007).  
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1.1.3.3   Central HVAC System 

 

 

A central HVAC system has its major components which are located near 

building and may control and serve one or more thermal zones.  The character of 

central HVAC system to transfer thermal energy is categorized in three types.  In the 

first type system is termed an all-air system, which is conveyed only by means of 

cooled or heated air.  In the second type system is called an all-water system, which 

is transferred only by means of cooled or hot water.  Finally the system is phrased an 

air-water system which is moved by mixing of heated/cooled air or water. 

 

 

By using of central HVAC systems there are a various benefits and 

advantages which are allowed and enabled important components to be separated in 

a mechanical room which is caused to take place limitation of interruption to 

building functions.  In addition, it is caused to reduce noise and aesthetic impacts on 

building occupants.  Other benefits of using central HVAC systems are economies of 

scale and reduction of building energy consumption.  For the inner one larger system 

can achieve and improve system efficiencies in many climates by using of cooling 

towers.  The later one in central system is also controlled to centralized energy 

management control schemes that, is made to reduce the energy consumption of 

building.  Moreover, by using central HVAC system can be more suitable rather than 

climate control perspective which is active smoke control.  Nevertheless, the 

disadvantages of central HVAC systems can be as a non-distributed system, which is 

affecting an entire building by failure of any components of equipments.  Moreover, 

the repairing of system will be difficult if the system size and sophistication are 

increased (Grondzik and Furst, 2000).  Figure 1.2 shows the diagram of the central 

HVAC system. 
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Figure 1.2: Diagram of central HVAC system (Jones, 2004) 

 

 

 

 

1.1.3.4   Local HVAC System 

 

 

A local HVAC system has important components which are located near the 

thermal zone itself, or on the boundary between the zone and exterior environment. 

This HVAC system controls a single thermal zone.  Serving only as a single zone, 

local HVAC systems will have only one point of control; typically a thermostat for 

active systems.  Each local system generally performs as a standalone system, 

without consider to the performance of other local systems.  There are a many 

advantages of using local HVAC systems.  Local systems tend to be distributed 

systems.  Distributed systems prefer to provide greater collective reliability than do 

centralized systems. 

 

 

Since local systems are likely to be of small capacity and are not complex and 

complicated by interconnections with other units.  In addition, the maintenance of 

local systems tends to be routine and simple.  Moreover, in a building which is 
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unoccupied and has unused space the local system can be turn off and makes energy 

saving. 

 

 

Nonetheless, local systems have some disadvantages.  For example local 

system units cannot be smoothly joined together to allow for management operations 

of centralized energy.  Moreover, local systems can normally be centrally controlled 

with reference to on-off functions through electric circuit control, but it is not 

possible to use more sophisticated central control such as night-setback or 

economizer operation.  In addition, local HVAC system has the low capacity 

coefficient of performance (COP).  Therefore, they cannot benefit from economies of 

scale (Grondzik and Furst, 2000).  Figure 1.3 shows the diagram of the local HVAC 

system. 

 

 

 

Figure 1.3: Diagram of local HAVC system (Jones, 2004) 

 

 

The comparison of different types of HVAC systems which consist of 

advantages and disadvantages are tabulated in Table 1.1. 
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Table 1.1: Categories of different types of HVAC system 

Type of system Advantage Disadvantage 

Local System 

-Distributed systems 

maintenance tends to be 

simple, ordinary and 

available. 

 

-Produce suitable 

occupant comfort 

through totally 

individualized control 

options. 

-Cannot be easily connected 

together to let centralized 

energy management 

operations. 

-Be centrally controlled with 

respect to on-off functions 

through electric circuit 

control. 

-Low capacity.  

-Cannot suitable from 

economies of scale. 

           

              1.Air system 

Central 

HVAC   2. water system 

 system         

              3.Air-water 

                   system 

 

 

 

-Major equipment 

components to be 

isolated in a mechanical 

room. 

-Reduce noise and 

aesthetic impacts. 

-Offer opportunities for 

economies. 

-Improve system 

efficiencies in many 

climates. 

-Can reduce building 

energy consumption via 

energy management 

control. 

 

-Failure of any key 

equipment component may 

affect an entire building as a 

non-distributed system. 

 

-Maintenance may become 

more difficult as system size 

and sophistication increase. 

 

-Transferring of conditions 

such as air or water imposes 

space and volume depends 

on building. 

 

Commercial HVAC 

system 

 

-Important tools are 

separated in a mechanical 

room. 

-Reduce noise and 

aesthetic impacts. 

 

-Maintenance may become 

more difficult based on 

system size and 

sophistication increase. 

 

 

Standard HVAC 

system 

 

-Overall controller for 

the DASs Typically 

consists of multiple, 

SISO control loops. 

-Supply water temperature is 

not locally controlled. 

 

 

 

 

In this project, the central HVAC system, which consists of air water system, 

is considered as a result, of having more benefits and advantages than the other types 

of HVAC systems. 
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1.2       Problem Statements 

 

 

HVAC systems are a permanent part of everyday life in our industrial society.  

In developing countries the use of energy is increased which influences the economy 

and way of life.  One of the most important pieces of equipment which influences 

energy consumption is HVAC system.  It is important to mention that the rate of 

energy consumption is high; therefore, optimizing and developing  air conditioning 

systems have become more and more important (Piao et al., 1998).   

 

 

It is noticed that the HVAC system is a highly non-linear system which means 

the input signal and output signal have no proportional relation.  However, the HVAC 

system has played a very important role in the modern world, so identification and 

simplification of the dynamic model and control of HAVC system have significant 

justification.  However, the basic PID controller which is commonly used to control 

the parameters of HVAC system is not sufficient based on the structure and 

characteristics of HVAC system.  Therefore, to effectively control the HVAC system 

using the PID controller, the PID control parameters must be optimized.  The 

problems of this study can be divided in three sections as follows: 

 

 

i) HVAC construction 

 

 

ii) Difficulty in control design due to complete math model of the HVAC 

 

 

iii) Tuning of PID controller to improve performance of the HVAC system 

 

 

 

 

1.3       Objectives of Research 

 

 

The present study investigates the effect of optimization of PID controller on 

humidity and temperature of simplified model of HVAC system.  Regarding to the 

structure, complexity and non-linearity of the HAVC system simplification and 
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optimization of HVAC system must be considered.  The accomplishment obtained 

from this investigation will be use full in enhance the performance of HVAC system 

with improved energy efficiency and human comfort.  The adjustment of humidity 

and temperature are aimed to reduce energy consumption and increase human 

comfort, respectively. 

 

 

The specific objectives of this research are: 

 

 

i) To examine the effect of non-linear decoupling method on HVAC 

system 

 

 

ii) To carry out the effect of optimization  PID controller regarding to 

new algorithm on parameters of simplified HVAC system 

 

 

iii) To study the effect of optimized PID controller regarding to new 

algorithm on energy efficiency and human comfort. 

 

 

 

 

1.4       Scopes of Research 

 

 

In this project, a non-linear decoupling method is used to investigate the 

structure of a mathematical model of, humidifier and heating coil which are 

describing relative humidity as well as temperature responses of full mathematic 

dynamic model of the HVAC system, respectively.  It is noticed that in mathematical 

model of HVAC system the CO2 and air velocity models are ignored.   

 

 

Epsilon constraint redial basis function of neural network has been used to 

control and optimized the parameters of PID controller with reference to overcome 

the non-linearity and convexity problem of the system.  To obtain the optimization 

tuning method, the epsilon constraint algorithm and redial basis function neural 
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network has been combined to produce the multi objective optimization method to 

control the parameters of HVAC system.  In addition, following results are obtained: 

 

 

i) The performance, transient response and human comfort of system are 

determined by integral absolute error (IAE) formulation based on new 

optimization algorithm 

 

 

ii) The energy efficiency of system is described by using the cost function 

formulation based on new optimization algorithm 

 

 

 

 

 

 

 

In this research, a novel optimization method based on epsilon constraint 

through the radial basis function is considered to optimize the PID controller to 

control the parameters of the HVAC system.  It is important to mention that the 

combination of redial basis function and epsilon constraint is used because of 

handling the non-linearity of the system and overcome the convexity problems of 

weighted sum techniques normally used in multi objective optimization. 

 

 

It is noticed that a study on optimization technique based on epsilon 

constraint algorithm through the radial basis function is not reported yet.  Based on 

the new algorithm these goals are achieved: 

 

 

i) Transient response of the system is improved. 

 

 

ii) Energy consumption of the system is decreased. 

 

 

iii) Performance of the system is increased. 

 

 

1.5       Significance of Study 
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1.6       Thesis Outline 

 

 

The thesis is divided into 5 chapters. 

 

 

Chapter 1 presents background of the different types of HVAC system, 

problem statements, objectives and scope of the study, and outline of the thesis.  

 

 

Chapter 2 focuses on the literature review.  The literature review contains 2 

main parts.  In the first section the basic principles as well as different models of 

HVAC systems are introduced.  In the second part the different types of tuning PID 

controller which had been used to control the parameters of HVAC system to achieve 

energy efficiency and target values are introduced. 

 

 

In chapter 3, the methodology explains in detail.  It consists of 2 main parts.  

First different types of decoupling method are described.  Then different types of 

tuning method of PID controller are explained.  Regarding to the tuning of PID 

controller based on the new algorithm, the parameters of humidity and temperature 

of HVAC system are controlled. 

 

 

Chapter 4 reports the influence of simplified model and tuning of PID 

controller which are being used in full mathematical dynamic model of HVAC 

system.  This chapter also discusses different decoupling techniques as well as 

comparison of simplified and original model.  Moreover, different types of 

controllers which are used to control the parameters of the HVAC system are 

compared and the best result which is validated by MATLAB is displayed. 

 

 

In chapter 5 the conclusion of the thesis and suggestions for future work are 

presented. 
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epsilon constraint method is considered because of ability to overcome the convexity 

problem of weight sum techniques which is normally used in multi objective 

optimization method and multi parameters that must be optimized to control the 

parameters of PID controller.  Regarding to new optimization of PID controller based 

on EC-RBF neural network the performance of the system is increased.  In addition, 

based on EC-RBF neural network the energy cost function, robustness as well as 

stability of the system for both humidity and temperature are improved.  Improving 

the energy cost function and transient response of system it makes to increase the 

energy efficiency and improve the human comfort, respectively. 

 

 

 

 

5.2       Future Recommendation 

 

 

In this study, whereas some assumptions such as CO2 and air velocity that are 

influenced the humidity and temperature are ignored.  A few suggestions for future 

work will be considered in two parts as mentioned below: 

 

 

In modeling part: 

 

 

Employing mathematical model of CO2 and air velocity are suggested. 

 

 

In controlling part: 

 

 

Based on new structure that is found in modeling part optimization of PID 

controller regarding to the multi objective and neural network algorithm is 

suggested. 
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