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ABSTRACT

Flameless combustion as a clean combustion technology has been recently developed due to
simultaneous low emission formation as well as efficient combustion process. Biogas has also recently
been identified as a potential alternative fuel for flameless combustion. Biogas has attracted attentions
because its generation is not limited to the specific geography. Since Malaysia is currently one of the
world's largest producer of palm oil, biogas released from palm oil mill effluent (POME) has great
capability to be applied as a source of energy in the country. Since the calorific value of POME biogas
is relatively low (around 22 MJ/m?), producing a stable flame of POME biogas premixed combustion
is quite difficult. Indeed, high temperature of flame front and high rates of thermal NOy formation,
complicated setting and low efficiency of the conventional biogas combustion are crucial problems in
applying biogas in premixed combustion system. Since upgrading of POME biogas is a complicated
and expensive process, direct injection of POME biogas in flameless combustion system is a candidate
for efficient POME biogas energy extraction. The objectives of this study are to investigate
performance of a laboratory-scale flameless combustion furnace fuelled by POME biogas in terms of
flameless stability, temperature distribution and pollutant formation. The effects of burner
configuration on the performance of POME biogas flameless combustion are evaluated. Moreover,
various aspects of biogas flameless mode in terms of burned gas recirculation inside the chamber and
relationship between mixing and chemical reactions, effects of various preheated diluted oxidizer on
the flameless combustion system are investigated numerically. The results confirm that flameless
combustion of POME biogas is feasible in the lean, stoichiometry and rich fuel circumstances and the
axial temperature of the chamber is higher in stoichiometric condition. Extremely low O, and CH4
concentration are recorded in highly diluted oxidizer in ultra-lean flameless combustion. Due to the
low calorific value of POME biogas and the distance between fuel/oxidizer jets, Damkohler number
is found higher than unity and consequently eddy dissipation method (EDM) is proposed for turbulence
chemistry interaction of POME biogas flameless combustion. The numerical results are in good
agreement with experimental results. The stability of POME biogas flameless combustion is discussed
based on the internally burned gas recirculation. It is found that POME biogas flameless combustion
is sustained when recirculation ratio (K) is greater than 2.6. Flameless combustion of POME biogas
is found to be limited to K, of less than 4.6 in coaxial burner configuration. In tangential burner
configuration, POME biogas flameless combustion is sustained in higher recirculation ratios (K, =6.3).
The efficiency of POME biogas flameless combustion is 62% and 66% in coaxial and tangential burner
configurations respectively. Temperature uniformity is calculated 0.92 and 0.96 in coaxial and
tangential burner configurations respectively. When equivalence ratio increases from 0.6 to 1.2, NOx
emission decreases from 2.4 ppm to less than 1 ppm in coaxial burner and from 3.1 ppmto 1.1 ppm in
tangential burner.
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ABSTRAK

Satu teknologi pembakaran yang bersih yang dinamakan pembakaran tanpa-api (PTA)
baru-baru ini telah berkembang disebabkan oleh sifatnya yang mempunyai pembentukan emisi
rendah serta menjanjikan proses pembakaran yang lebih cekap. Baru-baru ini juga biogas telah
dikenalpasti sebagai bahanapi alternatif yang boleh digunakan dalam proses pembakaran tanpa-
api. Tambahan pula, biogas sebagai bahan api alternatif telah menarik perhatian kerana ianya
tidak terhad kepada geografi tertentu. Memandangkan Malaysia merupakan antara pengeluar
minyak sawit terbesar di dunia, biogas yang dibebaskan daripada efluen kilang minyak sawit
(POME) berpotensi besar untuk digunakan sebagai sumber tenaga di negara ini. Walau
bagaimanapun, nilai kalori biogas POME adalah agak rendah (sekitar 22 MJ / m*) menyebabkan
penghasilan api yang stabil bagi pambakaran tanpa-api bagi proses pracampuran biogas POME
adalah agak sukar. Malahan, masalah seperti suhu api yang tinggi, kadar pembentukan NOx
termayang tinggi dan kecekapan sistem pembakaran konvensional biogas yang rendah adalah
masalah kritikal kepada pembakaran pracampuran biogas. Oleh kerana menaik taraf kualiti
bahanapi biogas POME sebelum digunakan dalam sistem pembakaran adalah satu proses yang
rumit dan mahal, suntikan terus biogas POME ke dalam sistem PTA adalah kaedah yang
berpotensi tinggi untuk digunakan bagi mencapai tahap pengeluaran tenaga yang cekap.
Objektif kajian ini adalah untuk menyiasat prestasi relau PTA berskala makmal menggunakan
biogas POME dari segi kestabilan pembakaran tanpa-api, taburan suhu dan pembentukan bahan
pencemaran. Kesan konfigurasi pembakar kepada prestasi POME biogas PTA juga dinilai.
Selain itu, pelbagai aspek seperti edaran semula gas pembakaran di dalam kebuk pembakaran,
hubungan antara proses pencampuran dan tindak balas kimia, dan kesan pelbagai pengoksida
dalam keadaan cair yang telah dipanaskan kepada sistem PTA dikaji secara simulasi. Keputusan
kajian mengesahkan bahawa PTA  biogas POME boleh dilaksanakan dalam keadaan
pencampuran cair, stoikiometri dan kayabahan api, dan suhu paksi ruang adalah lebih tinggi
pada keadaan stoikiometri. Kadar kepekatan O, dan CH, yang rendah telah direkodkan dalam
proses pengoksidaan yang sangat cair dalam mod PTA.Oleh kerana nilai kalori yang rendah
bagi biogas POME dan jarak antara jet bahan api/pengoksida, nombor Damkéhler didapati lebih
tinggi daripada nilai satu, oleh itu kaedah pelesapan eddy (EDM) telah dicadangkan untuk
proses interaksi kimia turbulent bagi POME biogas PTA. Keputusan simulasi menunjukkan
keputusan yang mirip dengan rekod eksperimen. PTA biogas POME tidak terhasil apabila K,
meningkat kepada jumlah lebih daripada 4.6. Dalam konfigurasi pembakar secara tangen, PTA
biogas POME kekal dalam nisbah edaran semula yang lebih tinggi (K, = 6.3). Kecekapan PTA
POME biogas masing-masing adalah 62% dan 66% bagi pembakar sepaksi dan tangen. Apabila
nisbah kesetaraan meningkat daripada 0.6 sehingga 1.2, pelepasan NOy menurun daripada 2.4
ppm kepada kurang daripada 1 ppm dalam pembakar sepaksi dan daripada 3.1 ppm kepada 1.1
ppm dalam pembakar tangen.
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CHAPTER 1

INTRODUCTION

11 Research Background

Fossil fuel consumption has increased rapidly throughout the world due to
industrial development. Utilization of petroleum as the most common fuel has been
developed in transportation, agricultural sectors and industrial factories. More than 80%
of energy demand of the world is provided by fossil fuel. Fossil fuel formation process
is very slow, taking many years, and current fossil fuel utilization is rapidly depleting

the natural reserves [1,2].

Today, fuel crisis has become one of the main concerns due to fossil fuel
resources depletion. Moreover, toxic emissions released from fossil fuel combustion
have become a dilemma problem in environmental issues [3]. Greenhouse gases
(GHGs) effects, climate change, increasing the sea level, receding of glaciers and lack
of biodiversity are the main consequences of more pollutant formation [4]. As a result,
more stringent laws have been regulated to cope with global warming and
environmental issues. These laws have led industrial factories and academic societies to
urgently find new methods for improving conventional combustion systems to decrease
emissions. Based on this background, the request of efficient combustors has become
more important [5,6]. In this regard some new alternative fuel resources such as animal
waste, agricultural products, wastewater effluent, and municipal solid waste (MSW)

have been introduced as the sustainable and renewable energy resources [7—10].

Palm oil is cultivated in Malaysia, Indonesia and Thailand in South East Asia

and some tropical countries in Africa and South America due to their appropriate
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equatorial climate. Palm oil by around 28% total production per annum has been known
as one of the biggest vegetable oil in the world [7]. However, the sustainability of palm
oil mills is under question due to huge amount of wastewater production. In the other
word, without suitable strategies, the released palm oil mill effluent (POME) from palm
oil mills can jeopardize the environment. Huge amount of biogas released from POME
in anaerobic digestion (AD) is the most important challenges in production process of
palm oil mills [8]. Indeed, biogas production from POME is intensified significantly by
adding solid residues like empty fruit bunches (EFB) to the POME [9].

Open pond systems are still commonly applied in most of the palm oil mills.
Although relatively cheap to install, these system often fail to meet discharge
requirements (due to lack of operational control, long retention time, silting and short
circuiting issues). Moreover, the biogas produced during the anaerobic decomposition
of POME in open pond systems is not recovered for utilization. The produced gas
dissipates into the atmosphere is the main contributor to the GHGs and this is dangerous
to global warming (due to the fact that CH4 is a twenty times stronger greenhouse gas

than CO») [11,12].

Biogas from POME can be captured using a number of various technologies. The
closed-tank anaerobic digester system with continuous stirred-tank reactor, the methane
fermentation system employing special microorganisms and the reversible flow
anaerobic baffled reactor system are among the technologies offered by technology
providers [13]. Gas production largely depends on the method deployed for biomass
conversion and capture of the biogas, therefore, approximately range from 5.8 to 12.75
kg of CH4 per cubic meter of POME. Application of enclosed AD significantly increases
the quality of the effluent/ discharge stream as well as the biogas composition. A closed
anaerobic system is capable of producing and collecting consistently high quality of

methane rich biogas from POME [14,15].
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Figure 1.1 shows a typical open and close AD ponds in Felda Maokil palm oil

mill located in Segamat, Johor, Malaysia.

(2) (b)

Figure 1.1  (a) Typical open digester and (b) close digester (Felda Maokil Segamat
Johor, Malaysia)

The components of biogas are GHGs which absorb and emit specific wavelengths
radiation within the thermal infrared radiation spectrum entered from atmosphere or
emitted by the earth and clouds [16]. Global warming is attributed to the greenhouse
effect. Dioxide carbon (CO2), methane (CH4), water vapor (H20), nitrous oxide (N20),
and ozone (O3) are the most important GHGs in the atmosphere. Global warming
potential for GHGs has been defined as the ratio of heat captured by one unit mass of

GHGs to one unit mass of CO> in a specific period of time [17].

Since combustion is still the most important technique for energy conversion, the
improvement of combustion efficiency plays crucial role to preserve fuel resources. It
has been proven that in biogas premixed combustion, the net emission of GHGs such as
COz, CH4 and N0 reduces dramatically in comparison with CH4 [18]. Development of
biogas utilization in industrial burners is difficult due to its low calorific value (LCV)
[19]. The collected biogas should be upgraded to remove its non-combustible impurities
like CO., water vapor and H>S. Furthermore, H>S and water vapor are corrosive material
which their elimination from POME biogas is vital due to their crucial role in burner

and boiler corrosion in premixed combustion [20].
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Today, water scrubbing systems are applied in most biogas plants due to their
simple mechanism. By utilization of water scrubber, the percentage of CHs in POME
biogas increases to more than 70%. By application of some advanced biogas upgrading
technologies such as membrane and cryogenic methods the percentage of CH4 in biogas
raises up to 90%, however the induced costs of these biogas purifications are very high
[21]. Therefore, new economic methods should be introduced to extract POME biogas

energy with some primary pretreatments.

Recently, flameless combustion has attracted attentions due to its ability to
intensify thermal efficiency and simultaneously pollutant reduction [22]. These
characteristics make flameless combustion a unique technology since most other
pollutant reduction techniques are associated with low thermal efficiency. Moderate and
Intensive Low Oxygen Dilution (MILD) combustion [23], emerged in 1990s, has been
successfully utilized, specially, in metallurgy and steel industries. Flameless Oxidation
(FLOX) in Germany [24], also known as High Temperature Air Combustion (HiTAC)
in Japan [25], or Colorless Distributed Combustion (CDC) [26], Low NOx Emission
Injection in the US is a new combustion technology which is capable to accomplish low

NOx emissions and high efficiency among various techniques [27].

During the development process of new combustion technologies, a particular
focus was dedicated to low NOx burners and engines. Flameless combustion has lately
received more attention not only for low NOy emission, but also in energy saving by
heat recirculation [28]. Compatibility between high performance and low NOx emission
is experimented by using preheated air and changing the combustion characteristics
from premixed flame to flameless mode. Although, the oxidizer is diluted and low
concentration of oxygen can be seen in flameless mode, combustion is sustained if air

is preheated higher than the auto-ignition temperature of fuel [29].

Flameless combustion is suitable for different industrial procedures that need a
uniform high temperature profile inside the furnace [30]. The main industrial
applications of flameless combustion now concern the metallurgy area for which the

major issue is energy efficiency. For the other industrial sectors, the issues are



sometimes different, but for such as glass-making and cement industry, waste treatment
[31], petrochemicals, gas turbines [32] or industrial boilers [33], it is very likely that this
new combustion mode will find its place, in the short or medium term. The main reasons
for development of this technology in industries can be cited as decreasing the rate of
NOy formation, increasing the rate of heat transfers, and rising the duration of the

equipment’s life time, which are mostly damaged by very high heat flux.

This high temperature air combustion has achieved approximately 30% reduction
in energy consumption and carbon dioxide emission and 25% reduction in the physical
size of facilities as compared with the traditional type of furnace. Furthermore, flameless
combustion technology has demonstrated extremely low levels of emissions of nitric

oxide, which are far below the present regulatory standards [34].

Flameless combustion phenomena occurs based on postponed mixing of air and
fuel and flue gas recirculation in the flame zone [35]. Very high temperature of diluted
reactants plays crucial role to exceed self-ignition temperature of the fuel and adopt
flameless combustion condition. To obtain efficient pollutant mitigation in industrial
flameless combustion furnaces, an intense reactants dilution is required. Dilution is done
when the oxidizer (air or oxygen) is mixed with inert gases, such as N>, CO», Ar, and
H>O, prior to the combustion process. This dilution substantially reduces the oxygen
concentration in the reactants. Therefore, flame quenching occurs due to low availability
of fuel or oxygen. These instabilities can be eliminated by supplying so much enthalpy

via preheated oxidizer that the self-ignition temperature of the fuel is obtained [36].

1.2 Problem Statement

Current research in the field of combustion technology has been focused on
reduction of emissions and improvement in energy efficiency [37,38]. Due to fossil fuel
depletion and high emission of fossil fuel combustion, utilization of alternative fuel has
attracted attentions [39]. Hence, combustion of LCV alternative fuels has become a new
challenge in combustion community [40]. There are many methods and approaches to

reduce pollutant emissions such as NOy, CO and CO> and flameless combustion is a
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new technology which recently has received more attention due to simultaneous low
emissions formation as well as more energy saving [41]. In the field of LCV alternative
fuel, biogas has received especial attention because unlike fossil fuels and other
renewable energy resources, biogas generation is not limited to the specific geography
[42]. Since Malaysia is currently one of the world's main producer and exporter of palm
oil [43], POME biogas has great capability to be applied as a source of energy in the
country. However, the calorific value of POME biogas is around 22 MJ/m? (which is
lower than NG with 39 MJ/m®) [44], thus making a stable flame of POME biogas
premixed combustion is difficult to be applied in industry. Beside LCV of biogas,
complicated setting and low efficiency of the conventional biogas combustion systems
could disappoint biogas users from biogas utilization [45]. Combustion instability, high
temperature of flame front and high rates of thermal NOx formation are the main
problems of biogas premixed combustion in industrial burners [46]. In the other hand,
upgrading of POME biogas is a complicated and expensive process [21]. Therefore,
flameless combustion could be a candidate method for energy extraction from POME
biogas because LCV fuel could be injected directly to the flameless combustion systems
without any primary process (such as upgrading and purification) and any changing of
the combustion system (burner and other equipment) [47]. Although the concepts of
fossil fuel flameless combustion have been extensively investigated experimentally and
numerically [48,49], biogas flameless combustion has received little attention. The most
important problems in biogas flameless combustion which have not been developed yet,

are summarized as below:

The stability of POME biogas flameless combustion, temperature distribution inside the
chamber and pollutant formation in biogas flameless mode are the main crucial
problems in this field of combustion.

Combustion model, chemical reaction and heat transfer model, recirculation ratio,
burned gas recirculation inside the chamber and the relation between chemical time
scale and mixing time scale in biogas flameless combustion have not been discussed
yet.

The effects of burner configuration on POME biogas flameless combustion has not been

considered yet.
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The possible ways to enhance the efficiency of biogas flameless combustion has not

been developed properly.

1.3 Research Objectives

Implementation of a successful low NOx flameless combustion system has always
been a challenge especially when LCV fuel is employed. The current study focuses on
the stability of POME biogas flameless combustion experimentally and numerically.

The objectives of the current research are:

To determine experimentally the performance of laboratory-scale flameless combustion
system fueled by POME biogas in terms of flameless stability, temperature distribution
inside the chamber and pollutant formation (CO, CO2, NOy).

To investigate the effects of burner configuration on the stability of POME biogas

flameless combustion, recirculation ratio and pollutant formation.

To evaluate numerically the detailed flow field, the effects of mixing and chemical
reactions on temperature distribution and burned gas recirculation (recirculation ratio)

inside the chamber with respect to various burner configurations.

14 Scopes of the Project

The research scope covers, design and manufacture of coaxial and tangential
burner configurations for a laboratory scale flameless combustor. POME biogas was
obtained from Felda Maokil palm oil mill located in Segamat, Johor, Malaysia
(Appendix B). Flameless combustion system with various burner configurations
(coaxial and tangential) is fueled by POME biogas experimentally. CO, CO2, CHa, NOx
and O, concentration are measured during the experiment. Effects of the preheated air
entry on the performance of POME biogas flameless combustion are studied. Since

burned gas recirculation inside the furnace plays significant role on the stability of



flameless combustion, the recirculation of burned gases inside the chamber and the
effects of burner configuration on the enhancement of recirculation ratio are studied
numerically. ANSYS Fluent 14 is employed to numerically solve biogas flameless
combustion. The effects of various equivalence ratios (0.6, 0.8, 1 and 1.2) as well as
preheated oxidizer temperature on the temperature distribution inside the chamber are

studied.

1.5 Thesis Outline

Five chapters are covered in the present thesis. Literature review and research
methodology are considered in the second and third chapters respectively. Experimental
setup and measurement instruments as well as numerical procedure of POME biogas
flameless mode are presented in third chapter. Results and discussions of the present
thesis are presented in chapter four. In the same chapter, the validity of numerical model
is illustrated. Then, a comprehensive investigation is conducted for the POME biogas
flameless combustion using coaxial and tangential burner configurations. The
consequences of the investigation are presented in chapter four. This chapter
encompasses discussions of the modeling of turbulent non-premixed flameless
combustion using the eddy dissipation model. The effects of mixing and chemical
reactions with respect to the burner configuration are developed numerically. The
experimental measurements of temperature inside the chamber, wall temperature,
temperature uniformity, nonvisible flame volume and emissions (NOx, CO2 and CO) are
reported in chapter four where the research work is finalized. Chapter five has
conclusive concept and provides discussion of the whole thesis. In this chapter summary

of the major findings, contributions and recommendations are presented.
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vil.  Industrialization of power generation in a palm mill using POME

biogas flameless combustion technique.
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